Spinal cord injury (SCI) is a destructive neurological disorder that causes impaired mobility, sensory, and autonomic dysfunctions. The loss of oligodendrocyte progenitor cells (OPCs), which can differentiate into mature oligodendrocytes and re-myelinate damaged axons, is related to poorer recovery for SCI patients. However, inhibiting OPCs loss has always been a difficult problem to overcome. In this study, we demonstrated the anti-ferroptosis effects of quercetin as a mechanism in erastin-induced OPC ferroptosis. Quercetin ameliorated erastin-induced ferroptosis in OPCs, as indicated by decreased iron concentration, reactive oxygen species (ROS) production, and increased content of glutathione (GSH) as well as more normal mitochondria morphology. Compared with erastin-induced OPCs, the myelin basic protein (MBP)-positive myelin and NF200-positive axonal was remarkably increased in quercetin-treated OPCs. Furthermore, quercetin ameliorated the erastin-induced ferroptosis as well as the myelin and axon loss of OPCs by downregulating transferrin. Transfected OPCs with transferrin overexpression plasmids significantly abrogated the protective role of quercetin in OPC ferroptosis. Using ChIP-qPCR, a direct interaction of transferrin with its upstream gene Id2 was found. The overexpression of Id2 reversed the effect of quercetin on OPC ferroptosis. In vivo study found that quercetin greatly decreased the area of injury, and enhanced the BBB score after SCI. Furthermore, in the SCI model, quercetin significantly downregulated Id2 and transferrin expression, while significantly up-regulated GPX4 and PTGS2 expression. In conclusion, quercetin prevents the ferroptosis of OPCs by inhibiting the Id2/transferrin pathway. These findings highlight quercetin as an anti-ferroptosis agent for the treatment or prevention of spinal cord injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2023.110556 | DOI Listing |
Brain Res
November 2024
Department of Neurosurgery, The People's Hospital of China Medical University, 110067 Liaoning, China. Electronic address:
Oligodendrocyte precursor cells (OPCs) respond rapidly to demyelination injury. However, the rescuing effects may be hindered by cell death of OPCs, leading to incomplete remyelination. This study aimed to explore the expression of MYC-associated zinc finger protein (MAZ) in demyelinated mice and the effects of MAZ on cell death form and differentiation of OPCs.
View Article and Find Full Text PDFCNS Neurosci Ther
August 2024
Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Aims: Hypoperfusion induces significant white matter injury in cerebral vascular disorders, including arteriosclerotic cerebral small vessel disease (aCSVD), which is prevalent among the elderly. Iron transport by blood vessel endothelial cells (BVECs) from the periphery supports oligodendrocyte maturation and white matter repair. This study aims to elucidate the association between iron homeostasis changes and white matter injury severity, and explore the crosstalk between BVECs and oligodendroglial lineage cells.
View Article and Find Full Text PDFCNS Neurosci Ther
March 2024
Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
Aim: This study aims to elucidate the cellular dynamics and pathophysiology of white matter hemorrhage (WMH) in intracerebral hemorrhage (ICH).
Methods: Using varying doses of collagenase IV, a consistent rat ICH model characterized by pronounced WMH was established. Verification was achieved through behavioral assays, hematoma volume, and histological evaluations.
Redox Biol
February 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China. Electronic address:
Accumulation of reactive oxygen species (ROS), especially on lipids, induces massive cell death in neurons and oligodendrocyte progenitor cells (OPCs) and causes severe neurologic deficits post stroke. While small compounds, such as deferoxamine, lipostatin-1, and ferrostatin-1, have been shown to be effective in reducing lipid ROS, the mechanisms by which endogenously protective molecules act against lipid ROS accumulation and subsequent cell death are still unclear, especially in OPCs, which are critical for maintaining white matter integrity and improving long-term outcomes after stroke. Here, using mouse primary OPC cultures, we demonstrate that interleukin-10 (IL-10), a cytokine playing roles in reducing neuroinflammation and promoting hematoma clearance, significantly reduced hemorrhage-induced lipid ROS accumulation and subsequent ferroptosis in OPCs.
View Article and Find Full Text PDFNeuroreport
August 2023
Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia.
Objective: Inflammation of the surrounding environment is a major reason causing loss or injury of oligodendrocyte precursor cells (OPCs) in myelin-associated diseases. Lipopolysaccharide-activated microglia can release various inflammatory factors such as tumor necrosis factor-α (TNF-α). One of the ways of OPC death is necroptosis, which can be triggered by TNF-α, a death receptor ligand, by activating receptor-interacting protein kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL) signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!