Survey of oligoethylene glycol-based self-assembled monolayers on electrochemical aptamer-based sensor in biological fluids.

Biochem Biophys Res Commun

School of Life Science and Technology, Tokyo Institute of Technology, B-50, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, B-50, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. Electronic address:

Published: August 2023

The ability to monitor levels of endogenous markers and clearance profiles of drugs and their metabolites can improve the quality of biomedical research and precision with which therapies are individualized. Towards this end, electrochemical aptamer-based (EAB) sensors have been developed that support the real-time monitoring of specific analytes in vivo with clinically relevant specificity and sensitivity. A challenge associated with the in vivo deployment of EAB sensors, however, is how to manage the signal drift which, although correctable, ultimately leads to unacceptably low signal-to-noise ratios, limiting the measurement duration. Motivated by the correction of signal drift, in this paper, we have explored the use of oligoethylene glycol (OEG), a widely employed antifouling coating, to reduce the signal drift in EAB sensors. Counter to expectations, however, when challenged in 37 °C whole blood in vitro, EAB sensors employing OEG-modified self-assembled monolayers exhibit both greater drift and reduced signal gain, compared with those employ a simple, hydroxyl-terminated monolayer. On the other hand, when EAB sensor was prepared with a mix monolayer using MCH and lipoamido OEG 2 alcohol, reduced signal noise was observed compared to the same sensor prepared with MCH presumably due to improved SAM construction. These results suggest broader exploration of antifouling materials will be required to improve the signal drift of EAB sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.05.032DOI Listing

Publication Analysis

Top Keywords

eab sensors
20
signal drift
16
self-assembled monolayers
8
electrochemical aptamer-based
8
drift eab
8
reduced signal
8
sensor prepared
8
eab
6
signal
6
sensors
5

Similar Publications

-CoFeO/TiCT/BNC Hybrid Aerogels with Modulation Impedance Matching for Electromagnetic Wave Absorption and Health Monitoring.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

Given the limitations of single-function electromagnetic wave-absorbing materials (EWAMs) in meeting the evolving demands of complex usage scenarios, there is a growing need for structure-function integrated composites that offer a combination of microwave absorption, human monitoring, and thermal insulation. This study successfully synthesized two-dimensional (2D) TiCT MXene via selective etching of Al from the TiAlC MAX phase. By introducing MXene into a composite of hydroxylated CoFeO nanoparticles (-CFO NPs) and bacterial nanocellulose (BNC) to modulate the electromagnetic performance of the EWAMs.

View Article and Find Full Text PDF

Electroactive biofilm (EAB) sensors have become pivotal in water quality detection and early ecological risk warnings due to their remarkable sensitivity. However, it is challenging to identify multiple toxicants in complex water bodies concurrently. This research developed an innovative biosensor detection strategy combined with machine learning.

View Article and Find Full Text PDF
Article Synopsis
  • * One particular compound showed excellent performance with effective cross-linking, a stable electrochemical potential, and strong durability, making it ideal for sensor applications.
  • * The compound demonstrated consistent current levels in serum, effectively detecting doxorubicin, thus indicating its potential for developing reliable and sensitive sensors in clinical settings.
View Article and Find Full Text PDF

Direct detection of doxorubicin in whole blood using a hydrogel-protected electrochemical aptamer-based biosensor.

Talanta

November 2024

School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China.

Electrochemical aptamer-based biosensors (EABs) have been developed for multiple important biomarkers for their convenient and real-time features. However, the application of EABs in complex biological fluids has been limited by the rapid loss of sensitivity and selectivity due to inactivation and biofouling of aptamer probes and electrodes. To address this issue, we report the preparation of a simple hydrogel-protected aptamer-based biosensor (HP-EAB) for direct detection of Doxorubicin (DOX) in whole blood.

View Article and Find Full Text PDF

Localized high probe density greatly improves the signaling stability of supramolecular electrochemical aptamer-based (Supra-EAB) sensors.

Chem Commun (Camb)

December 2024

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

Article Synopsis
  • DNA aptamers are being developed as effective tools for creating biosensors.
  • The main method for adjusting the density of these probes has been through changing DNA concentrations.
  • Researchers created a new type of sensor, called Supra-EAB, which allows for higher localized probe densities and enhances stability against enzymes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!