Chitooligosaccharides have been suggested as cholesterol reducing ingredients mostly due to their ability to sequestrate bile salts. The nature of the chitooligosaccharides-bile salts binding is usually linked with the ionic interaction. However, at physiological intestinal pH range (6.4 to 7.4) and considering chitooligosaccharides pKa, they should be mostly uncharged. This highlights that other type of interaction might be of relevance. In this work, aqueous solutions of chitooligosaccharides with an average degree of polymerization of 10 and 90 % deacetylated, were characterized regarding their effect on bile salt sequestration and cholesterol accessibility. Chitooligosaccharides were shown to bind bile salts to a similar extent as the cationic resin colestipol, both decreasing cholesterol accessibility as measured by NMR at pH 7.4. A decrease in the ionic strength leads to an increase in the binding capacity of chitooligosaccharides, in agreement with the involvement of ionic interactions. However, when the pH is decreased to 6.4, the increase in charge of chitooligosaccharides is not followed by a significant increase in bile salt sequestration. This corroborates the involvement of non-ionic interactions, which was further supported by NMR chemical shift analysis and by the negative electrophoretic mobility attained for the bile salt-chitooligosaccharide aggregates at high bile salt concentrations. These results highlight that chitooligosaccharides non-ionic character is a relevant structural feature to aid in the development of hypocholesterolemic ingredients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.05.056DOI Listing

Publication Analysis

Top Keywords

bile salt
16
salt sequestration
12
non-ionic interactions
8
chitooligosaccharides
8
bile salts
8
cholesterol accessibility
8
bile
7
contribution non-ionic
4
interactions bile
4
salt
4

Similar Publications

Background And Aims: Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood.

Methods: Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring.

Results: Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions.

View Article and Find Full Text PDF

Our previous study demonstrated that γ-cyclodextrin (γ-CD)-perilla oil inclusion complexes increase plasma α-linolenic acid and eicosapentaenoic acid levels in healthy rats without adverse effects. The present study examined the effects of perilla oil, γ-CD, and their inclusion complexes on rats fed cholic acid (CA) to mimic the elevated gastrointestinal 12-hydroxylated (12OH) bile acid levels in high-fat diet-fed rats. Rats fed CA (CA group) tended to have higher AST, ALT, plasma total cholesterol (T-CHO), and triglyceride (TG) levels compared to controls fed a standard diet without CA.

View Article and Find Full Text PDF

Bile salt hydrolase (BSH), a probiotic-related enzyme with cholesterol-assimilating and anti-hypercholesterolemic abilities, has been isolated from intestinal bacteria; however, BSH activity of bacteria in bile-salt-free (non-intestinal) environments is largely unknown. Here, we aimed to identify BSH from non-intestinal and characterize its enzymatic function. We successfully isolated a plasmid-encoded () from , and the recombinant EfpBSH showed BSH activity that preferentially hydrolyzed taurine-conjugated bile salts, unlike the activity of known BSHs.

View Article and Find Full Text PDF

Soluble Herpes Virus Entry Mediator and Type II/III Interferons Are Upregulated in Primary Biliary Cholangitis.

Int J Mol Sci

January 2025

The Roger Williams Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London & Foundation for Liver Research, London SE5 9NT, UK.

Bacterial translocation-induced inflammation and immune dysfunction are recognised factors contributing to the pathogenesis of primary biliary cholangitis (PBC). However, the specific involvement of interferons (IFNs) and soluble checkpoints (sol-CRs) in shaping the immune landscape in PBC patients remains unexplored. Furthermore, the influence of ursodeoxycholic acid (UDC) on these immune mediators is unknown.

View Article and Find Full Text PDF

Development and Application of PSCPL13 Probiotics in Olive Flounder () Farming.

Microorganisms

January 2025

Laboratory of Veterinary Pharmacokinetics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.

Aquaculture has grown significantly, contributing to global food security and sustainability; however, intensified fish farming has increased disease susceptibility and antibiotic resistance. This study assessed the probiotic potential of PSCPL13 (hereafter, PSCPL13), isolated from the intestines of Japanese eels, for enhancing the health of olive flounder. After screening 16 isolates, PSCPL13 was selected because of its potential broad-spectrum antibacterial activity against many pathogens, such as and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!