Hepatic transcriptomic analysis reveals that Hif1α/ldha signal is involved in the regulation of hypoxia stress in black rockfish Sebastes schlegelii.

Comp Biochem Physiol Part D Genomics Proteomics

Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China. Electronic address:

Published: September 2023

Hypoxia has become a common problem for aquatic organisms due to the interaction of global climate change and human activity. Black rockfish inhabits rocky reefs in waters of Japan, Korea and China, whereas the limited hypoxia tolerance leads to mass mortality and great economic loss. In this study, high-throughput RNA-seq for transcriptomic analysis was used to investigate the hepatic response in black rockfish under hypoxia (critical oxygen tension, Pcrit; loss of equilibrium, LOE) and reoxygenation (recover normal dissolved oxygen 24 h, R24) to explore the mechanisms underlying hypoxia tolerance and adaptation. A total of 573,040,410 clean reads and 299 differentially expressed genes (DEGs) in total were obtained during hypoxia and reoxygenation. GO annotation and Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the DEGs are mainly enriched in the biochemical metabolic pathways and HIF-1 signaling pathways. Transcriptomic analysis also identified 18 DEGs associated with HIF-1 signaling pathway (hif1α, tf, epo, hmox, gult1, mknk2, ldha, pfkfb3, hkdc, aldoa) and biological process (hif2α, apoeb, bcl6, mr1, errfi1, slc38a4, igfbp1a, ap4m1) as further validated by quantitative real-time PCR. Moreover, hif1α was positively or negatively correlated with glucose (ldha, pfkfb3, hkdc, aldoa) and lipid (apoeb) metabolism-related genes. The mRNA level of hif1α was significantly up-regulated under acute hypoxia stress and obtained the higher values than hif2α. Meanwhile, hif1α recognized the hypoxia response element located in the promoter of ldha and directly bound to the promoter to transactivate ldha expression. These results indicated that black rockfish may mainly utilize glycolysis to maintain homeostasis, and hif1α facilities hypoxia tolerance by modulating ldha expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2023.101098DOI Listing

Publication Analysis

Top Keywords

black rockfish
16
transcriptomic analysis
12
hypoxia tolerance
12
hypoxia
9
hypoxia stress
8
hif-1 signaling
8
ldha pfkfb3
8
pfkfb3 hkdc
8
hkdc aldoa
8
ldha expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!