The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics?

Biosens Bioelectron

Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK. Electronic address:

Published: September 2023

AI Article Synopsis

  • Advances in consumer electronics, microfluidics, and nanotechnology have enabled the creation of affordable wearable smart devices that can track digital biomarkers, though traditional biomarker tracking still largely relies on laboratory tests.
  • While real-time sensing of physiological and behavioral data from patients has the potential to enhance diagnosis and treatment using AI, current methods often require trained personnel and specialized equipment, especially in developing countries.
  • This review examines the integration of traditional and digital biomarkers through portable devices and highlights the role of AI in improving point-of-care diagnostics, outlining both the challenges and future prospects for this technology.

Article Abstract

Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of "point-of-care" (POC) diagnostics is finally showcased.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115387DOI Listing

Publication Analysis

Top Keywords

digital biomarkers
12
traditional digital
8
smart devices
8
diagnosis treatment
8
convergence traditional
4
digital
4
biomarkers
4
biomarkers ai-assisted
4
ai-assisted biosensing
4
biosensing era
4

Similar Publications

Background: Nonalcoholic fatty liver disease (NAFLD) has developed as a leading public wellness challenge as a result of changes in dietary patterns. Unfortunately, there is still a lack of effective pharmacotherapy methods for NAFLD. Wang's empirical formula (WSF) has demonstrated considerable clinical efficacy in treating metabolic disorders for years.

View Article and Find Full Text PDF

Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and G12/G13 Detection in Cell-Free DNA.

Cancer Genomics Proteomics

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Background/aim: Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival.

View Article and Find Full Text PDF

In 1924, the Dutch physiologist Willem Einthoven received the Nobel Prize in Physiology or Medicine for his discovery of the mechanism of the electrocardiogram (ECG). Anno 2024, the ECG is commonly used as a diagnostic tool in cardiology. In the paper 'Le Télécardiogramme', Einthoven described the first recording of the now most common cardiac arrhythmia: atrial fibrillation (AF).

View Article and Find Full Text PDF

Diagnosis, Severity, and Prognosis from Potential Biomarkers of COVID-19 in Urine: A Review of Clinical and Omics Results.

Metabolites

December 2024

Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, University of Alicante, 03690 Alicante, Spain.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has spurred an extraordinary scientific effort to better understand the disease's pathophysiology and develop diagnostic and prognostic tools to guide more precise and effective clinical management. Among the biological samples analyzed for biomarker identification, urine stands out due to its low risk of infection, non-invasive collection, and suitability for frequent, large-volume sampling. Integrating data from omics studies with standard biochemical analyses offers a deeper and more comprehensive understanding of COVID-19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!