Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantum dots (QDs) containing zinc (Zn) and tellurium (Te) have low toxicity and excellent optoelectronic properties, which make them ideal fluorescent probes for use in environmental monitoring. However, their size/shape distribution synthesized by existing methods is not as good as that of other nanoparticles, thus limiting their application. Exploring whether this kind of QD can be biosynthesized and whether it can act as a nanoprobe are favorable attempts to expand the synthesis method and the application of QDs. Telluride QDs were biosynthesized in Escherichia coli cells. The nanoparticles were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma-atomic emission spectrometry (ICP‒AES), indicating that they were ZnSTe QDs. The QDs were monodispersed, spherical and fluorescently stable, with a uniform particle size of 3.05 ± 0.48 nm. The biosynthesis conditions of the QDs, including substrate concentrations and their process time, were optimized respectively. It was verified that the cysE and cysK genes were involved in the biosynthesis of telluride QDs. The biosynthesis ability of the QDs was improved by knocking out the tehB gene and overexpressing the pckA gene. Escherichia coli BW25113 cells that synthesized ZnSTe QDs were used as environmentally friendly fluorescent bioprobes to specifically select and quantitatively detect Fe in water with a low limit of detection (2.62 μM). The fluorescent cells were also photobleach resistant and had good fluorescence stability. This study expands on the synthesis method of telluride QDs and the application of fluorescent probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2023.05.060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!