Silicate spherules have been identified from the ca. 3.4 Ga-old Strelley Pool Formation (SPF) in the Pilbara Craton, Western Australia. Their origins and geochemical characteristics, including the Re and platinum-group elements of their host clastic layer and the overlying and underlying microfossil-bearing finely laminated carbonaceous cherts, were examined. The spherules have various morphologies (completely spherical to angular), sizes (∼20 to >500 μm), textures (layered, non-layered, and fibrous), mineralogy (various proportions of microcrystalline quartz, sericite, anatase and Fe-oxides), and chemistry (enriched in Ni and/or Cr), commonly with thin anatase-rich walls. Their host clastic layer is characterized by rip-up clasts, suggesting a suddenly occurring high-energy depositional environment, such as tsunamis. Although various origins other than asteroid impact were considered, none could unequivocally explain the features of the spherules. In contrast, non-layered spherical spherules that occur as individual framework grains or collectively comprise angular-shaped rock fragments appear to be more consistent with the asteroid impact origin. The calculated Re-Os age of the cherts (3331 ± 220 Ma) was consistent with the established age of the SPF (3426-3350 Ma), suggesting that the Re-Os system was not significantly disturbed by later metamorphic and weathering events.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2021.0155DOI Listing

Publication Analysis

Top Keywords

silicate spherules
8
platinum-group elements
8
strelley pool
8
pool formation
8
western australia
8
host clastic
8
clastic layer
8
asteroid impact
8
spherules
5
origin silicate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!