Copper tellurides have garnered substantial interest for their applicability as an electrocatalyst for water splitting, battery anodes and photodetectors, etc. Moreover, synthesis of phase pure metal tellurides using the multi-source precursor method is challenging. Therefore, a facile synthesis protocol for copper tellurides is anticipated. The current study involves a simplistic single source molecular precursor pathway for the synthesis of orthorhombic-CuTe nano blocks and -CuTe faceted nanocrystals employing the [Cu{TeCH(Me-5)N}] cluster in thermolysis and pyrolysis, respectively. The pristine nanostructures were carefully characterized by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, electron microscopic techniques (scanning electron microscopy and transmission electron microscopy), and diffuse reflectance spectroscopy to know the crystal structure, phase purity, elemental composition, distribution of elements, morphology, and optical band gap. These measurements suggests that the reaction conditions fetch nanostructures of different sizes, crystal structures, morphologies, and band gaps. As prepared nanostructures were evaluated for lithium-ion batteries (LIBs) anode material. The cells fabricated with orthorhombic CuTe and orthorhombic CuTe nanostructures deliver capacities of 68 and 118 mA h/g after 100 cycles. The LIB anode made up of CuTe faceted nanocrystals exhibited good cyclability and mechanical stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c00269DOI Listing

Publication Analysis

Top Keywords

lib anode
8
copper tellurides
8
faceted nanocrystals
8
electron microscopy
8
orthorhombic cute
8
nanostructures
5
molecular precursor-driven
4
synthesis
4
precursor-driven synthesis
4
synthesis copper
4

Similar Publications

Two Steps Li Ion Storage Mechanism in Ruddlesden-Popper LiLaTiO.

Adv Sci (Weinh)

January 2025

Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology, Jinju, Gyeongnam, 52851, Republic of Korea.

Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs.

View Article and Find Full Text PDF

Silicon (Si) is recognized as a promising anode material for lithium-ion batteries (LIBs). However, the significant volume expansion during lithiation poses a make-or-break challenge for the commercial adoption of silicon as an anode. The solutions to mitigate the challenge often depend on processes that can increase costs for the LIB.

View Article and Find Full Text PDF

The search for new anode materials with high lithium-ion battery (LIB) capacity has attracted considerable attention due to the increasing need for electrical power. Here, we utilized first-principles calculations to develop a honeycomb-structured BCN monolayer, which exhibits an ultra-high Li-ion storage capacity of 2244 mA h g as an anode material for LIBs. Furthermore, the calculations show that the BCN monolayer has a comparatively small diffusion barrier of 0.

View Article and Find Full Text PDF

Interface Engineering of Styrenic Polymer Grafted Porous Micro-Silicon/Polyaniline Composite for Enhanced Lithium Storage Anode Materials.

Polymers (Basel)

December 2024

Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-do, Republic of Korea.

Si anode materials are promising candidates for next-generation Li-ion batteries (LIBs) because of their high capacities. However, expansion and low conductivity result in rapid performance degradation. Herein, we present a facile one-pot method for pyrolyzing polystyrene sulfonate (PSS) polymers at low temperatures (≤400 °C) to form a thin carbonaceous layer on the silicon surface.

View Article and Find Full Text PDF

Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!