The microbiota during pit mud fermentation is a crucial factor in Baijiu brewing since it determines the yield and flavor. However, the impact of the microbial community during the initial fermentation stage on Baijiu quality remains uncertain. Herein, high-throughput sequencing was employed to investigate the microbial diversities and distribution during Baijiu fermentation in individual pit mud workshops at both initial and late stages. During the initial fermentation stage, the bacterial community exerted a more pronounced effect on Baijiu quality than the fungal community. And the high-yield pit mud workshop exhibited lower richness and evenness, as well as greater Bray-Curtis dissimilarity during Baijiu fermentation. Lactobacillus was the dominant genus and biomarker in high-yield pit mud, and it constituted the only genus within the bacterial association network during the late fermentation stage. Fungal communities tended to maintain a simple association network with selected core species. Based on the correlation network, Rhizopus and Trichosporon were identified as biomarkers in Baijiu fermentation process. Together, Lactobacillus and Rhizopus could serve as bio-indicators for Baijiu quality during the initial fermentation stage. Therefore, these findings provided novel insights into microbiota interactions during fermentation and the impact of initial microbiota on final Baijiu quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10123-023-00379-5 | DOI Listing |
Environ Microbiome
January 2025
Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.
Background: Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples.
View Article and Find Full Text PDFSci Rep
December 2024
Nanyang Vocational College, Nanyang, 473000, China.
In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Mathematical Statistics and Actuarial Sciences, University of the Free State, Bloemfontein, Free State, South Africa.
Background: This study investigated malaria epidemiology in Edo-North, Nigeria; a region within the equatorial rainforest belt that has lacked prior research on malaria prevalence. This research sought to investigate the prevalence of malaria and identify potential risk factors in Edo-North, Nigeria. Additionally, the study aimed to analyze trends in malaria cases to inform the development of effective malaria control measures.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
November 2024
State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
is an important microbial component in pit mud due to its ability to produce alcohol and short-chain fatty acids. This study presents the characterization and taxonomy of two Gram-stain-positive, strictly anaerobic, rod-shaped mesophilic bacterial strains, designated MT-113 and MT-5, isolated from pit mud in a fermentation cellar used for producing sauce-flavour Chinese baijiu. Phylogenetic analysis based on genome and 16S rRNA gene sequences of strains MT-113 and MT-5 indicates their affiliation with the genus (Cluster I of the Clostridia), with FW431 and WLY-B-L2 as the closest related species.
View Article and Find Full Text PDFFood Microbiol
January 2025
State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 312000, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 312000, Zhejiang, China. Electronic address:
Strong-flavor Baijiu (SFB) production has relied on pit mud (PM) as a starter culture. The maturation time of natural PM (NPM) is about 30 years, so artificial PM (APM) with a shorter maturation time has attracted widespread attention. This study reveals the microbial and functional dissimilarities of APM and NPM, and helps to elucidate the different metabolic roles of microbes during substrate degradation and flavor formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!