A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemical emasculation in cowpea (Vigna unguiculata (L.) Walp.) and dicotyledonous model species using trifluoromethanesulfonamide (TFMSA). | LitMetric

Chemical emasculation in cowpea (Vigna unguiculata (L.) Walp.) and dicotyledonous model species using trifluoromethanesulfonamide (TFMSA).

Plant Reprod

Graduate School of Sustainability Science, Tottori University, 4-101 Koyama Minami, Tottori, 680-8550, Japan.

Published: September 2023

Hybridization plays an indispensable role in creating the diversity associated with plant evolution and genetic improvement of crops. Production of hybrids requires control of pollination and avoidance of self-pollination for species that are predominantly autogamous. Hand emasculation, male sterility genes or male gametocides have been used in several plant species to induce pollen sterility. However, in cowpea (Vigna unguiculata (L.) Walp), a self-pollinated cleistogamous dryland crop, only hand emasculation is used, but it is tedious and time-consuming. In this study, male sterility was effectively induced in cowpea and two dicotyledonous model species (Arabidopsis thaliana (L.) Heynh. and Nicotiana benthamiana Domin) using trifluoromethanesulfonamide (TFMSA). Pollen viability assays using Alexander staining showed that 30 ml of 1000 mg/l TFMSA with two-time treatments of one-week interval at the early stage of the reproductive phase under field or greenhouse conditions induced 99% pollen sterility in cowpea. TFMSA treatment induced non-functional pollen in diploid A. thaliana at two-time treatment of 10 ml of 125-250 mg/l per plant and N. benthamiana at two-time treatment of 10 ml of 250-1000 mg/l per plant. TFMSA-treated cowpea plants produced hybrid seeds when used as the female parent in crosses with non-treated plants used as male parents, suggesting that TFMSA had no effect on female functionality in cowpea. The ease of TFMSA treatment and its effectiveness to induce pollen sterility in a wide range of cowpea genotypes, and in the two model plant species tested in this study, may expand the scope of techniques for rapid pollination control in self-pollinated species, with potential applications in plant breeding and plant reproduction science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363044PMC
http://dx.doi.org/10.1007/s00497-023-00469-4DOI Listing

Publication Analysis

Top Keywords

pollen sterility
12
cowpea vigna
8
vigna unguiculata
8
unguiculata walp
8
dicotyledonous model
8
model species
8
trifluoromethanesulfonamide tfmsa
8
hand emasculation
8
male sterility
8
plant species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!