Passion fruit (Passiflora edulis) viral diseases caused by papaya leaf curl Guangdong virus, cucumber mosaic virus, East Asian Passiflora virus, and euphorbia leaf curl virus have been reported in South Korea (Joa et al. 2018; Kim et al. 2018). In June 2021, virus-like symptoms, e.g., mosaic pattern, curling, chlorosis, and deformation, were observed on leaves and fruits of greenhouse-grown P. edulis in Iksan, South Korea, with disease incidence greater than 2% (300 plants: 8 symptomatic plants and 292 asymptomatic plants). Total RNA was extracted from a pooled sample of symptomatic leaves of an individual P. edulis plant using the RNeasy Plant Mini Kit (Qiagen, Germany), and a transcriptome library was generated using the TruSeq Stranded Total RNA LT Sample Prep Kit (Illumina, San Diego, CA). Next-Generation Sequencing (NGS) was performed using the Illumina NovaSeq 6000 system (Macrogen Inc., Korea). De novo assembly of the resulting 121,154,740 reads was performed using Trinity (Grabherr et al. 2011). A total of 70,895 contigs was assembled (>200 bp) and annotated against the NCBI viral genome database using BLASTn (ver. 2.12.0). One 827-nt contig was annotated as milk vetch dwarf virus (MVDV), a member of the genus Nanovirus in the family Nanoviridae (Bangladesh isolate, acc. no. LC094159, 96.0% nucleotide identity), and the other 3,639-nt contig corresponded to Passiflora latent virus (PLV), a member of the genus Carlavirus in the family Betaflexiviridae (Israel isolate, acc. no. DQ455582, 90.0% nucleotide identity). For further confirmation, total RNA was isolated from symptomatic leaves of the same P. edulis used for NGS analysis using a viral gene spin DNA/RNA extraction kit (iNtRON Biotechnology, Seongnam, Korea), and reverse transcription polymerase chain reaction (RT-PCR) was performed using specific primers: PLV-F/R (5'-GTGCCCACCGAACATGTTACCTC-3'/5'-CCATGCACTTGGAATGCTTACCC-3') targeting the coat protein region of PLV, MVDV-M-F/R (5'-CTAGTCAGCCATCCAATGGTG-3'/5'-GTGCAGGGTTTGATTGTCTGC-3') targeting the movement protein region, and MVDV-S-F/R (5'-GGATTTTAATACGCGTGGACGATC-3'/5'-AACGGCTATAAGTCACTCCGTAC-3') targeting the coat protein region of MVDV. An expected PCR product of 518 bp corresponding to PLV was amplified, while MVDV was not detected. The amplicon was directly sequenced, and its nucleotide sequence was deposited in GenBank (acc. no. OK274270). A BLASTn analysis showed that the nucleotide sequence of the PCR product shared 93.0% and 96.2% identity with PLV isolates from Israel (MH379331) and Germany (MT723990), respectively. In addition, six passion fruit leaves and two fruit samples with PLV-like symptoms were collected from a total of eight plants grown in the greenhouse in Iksan for RT-PCR analysis, and six samples tested positive for PLV. However, PLV was not detected in one leaf and one fruit among all samples. Mechanical sap inoculation was conducted using extracts of systemic leaves as inoculum on P. edulis and the indicator plants Chenopodium quinoa, Nicotiana benthamiana, N. glutinosa, and N. tabacum. In P. edulis, vein chlorosis and yellowing on systemic leaves were observed 20 days post inoculation (dpi). Necrotic local lesions were observed on inoculated leaves of N. benthamiana and N. glutinosa 15 dpi, and PLV infection was confirmed by RT-PCR assay in symptomatic leaf tissue. This study aimed to determine whether commercially grown passion fruit in the southern part of South Korea could be infected with and potentially spread PLV. Whereas PLV was asymptomatic in persimmon (Diospyros kaki) in South Korea, no pathogenicity testing in passion fruit was reported (Cho et al. 2021). Here, we have shown the natural infection of passion fruit with PLV in South Korea for the first time and associated infection with obvious symptoms. This suggests a need to evaluate potential losses in passion fruit and the selection of healthy propagation material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-01-23-0051-PDN | DOI Listing |
Curr Res Food Sci
December 2024
College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
Fresh passion fruit is sensitive to chilling injury (CI) during storage at improper low temperature of 5 °C, which lowers the fruit quality and limits its shelf life. The present study aimed to determine the impacts of melatonin on CI development of passion fruit in relation to antioxidant ability and membrane lipid metabolism during refrigeration. In present study, passion fruit was treated with 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp.
View Article and Find Full Text PDFViruses
November 2024
Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
Patchouli is a valuable medicinal herb and cash crop in China, but viral infections cause significant yield losses. This study identified six viruses in patchouli transcriptome data, including the first-ever detection of East Asian Passiflora Virus (EAPV) in patchouli. RT-PCR validated three viruses from diseased patchouli plants in Haikou, China: telosma tosaic virus (TelMV), broad bean wilt virus-2 (BBWV-2), and pogostemom alphacytorhabdovirus 1 (PogACRV1_Pog).
View Article and Find Full Text PDFPlant Dis
January 2025
University of Florida Tropical Research and Education Center, Plant Pathology, 1615 SE 23rd Way, Homestead, Florida, United States, 33031-3314;
The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!