3D integration of III-V semiconductors with Si CMOS is highly attractive since it allows combining new functions such as photonic and analog devices with digital signal processing circuitry. Thus far, most 3D integration approaches have used epitaxial growth on Si, layer transfer by wafer bonding, or die-to-die packaging. Here we present low-temperature integration of InAs on W using SiN template assisted selective area metal-organic vapor-phase epitaxy (MOVPE). Despite growth nucleation on polycrystalline W, we can obtain a high yield of single-crystalline InAs nanowires, as observed by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The nanowires exhibit a mobility of 690 cm/(V s), a low-resistive, Ohmic electrical contact to the W film, and a resistivity which increases with diameter attributed to increased grain boundary scattering. These results demonstrate the feasibility for single-crystalline III-V back-end-of-line integration with a low thermal budget compatible with Si CMOS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273455 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.2c04908 | DOI Listing |
Rev Sci Instrum
December 2024
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083 Shanghai, China.
Infrared photoluminescence (PL) spectroscopy with micron-scale spatial resolution is essential for the optoelectronic characterization of narrow-gap microstructures and single defects, yet it poses significant challenges due to the exceedingly weak PL signal and strong background thermal emission. This work introduces an infrared micro-PL (μPL) mapping system that achieves a spatial resolution of ∼2 μm, leveraging the inherent advantages of the step-scan Fourier transform infrared spectrometer-based modulated PL technique in the mid- and far-infrared regions. The configuration of the experimental system is described, and a theoretical upper limit of spatial resolution is derived to be about 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
Nanowire (NW) field-effect transistors (FETs) have great potential in next-generation integrated circuits. InAs NWs are suitable for N-type transistors because of their excellent electrical properties. However, unlike the Si/SiO system, the loose and defective native oxide of InAs is unable to passivate the channel surface and serve as an efficient isolation layer (IL) in the gate stack.
View Article and Find Full Text PDFSensors (Basel)
November 2024
College of Nanotechnology, Science and Engineering, University at Albany, Albany, NY 12203, USA.
Self-assembled InAs quantum dots (QDs) are promising optomechanical elements due to their excellent photonic properties and sensitivity to local strain fields. Microwave-frequency modulation of photons scattered from these efficient quantum emitters has been recently demonstrated using surface acoustic wave (SAW) cavities. However, for optimal performance, a gate structure is required to deterministically control the charge state and reduce the charge noise of the QDs.
View Article and Find Full Text PDFElectron beam lithography is a standard method for fabricating photonic micro and nanostructures around semiconductor quantum dots (QDs), which are crucial for efficient single and indistinguishable photon sources in quantum information processing. However, this technique is difficult for direct 3D control of the structure shape, complicating the design and enlarging the 2D footprint to suppress in-plane photon leakage while directing photons into the collecting lens aperture. Here, we present an alternative approach to employ xenon plasma-focused ion beam (Xe-PFIB) technology as a reliable method for the 3D shaping of photonic structures containing low-density self-assembled InAs/InP quantum dots emitting in the C-band range of the 3rd telecommunication window.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!