Between 2003 and 2017, four reports were published that demonstrated the intrinsic ability of the native iron-containing proteins cytochrome c and ferritin to undergo radical-based backbone fragmentation in the gas phase without the introduction of exogenous electrons. For cytochrome c in particular, this effect has so far only been reported to occur in the ion source, preventing the in-depth study of reactions occurring after gas-phase isolation of specific precursors. Here, we report the first observation of this intrinsic native electron capture dissociation behavior after quadrupole isolation of specific charge states of the cytochrome c dimer and trimer, providing direct experimental support for key aspects of the mechanism proposed 20 years ago. Furthermore, we provide evidence that, in contrast to some earlier proposals, these oligomeric states are formed in bulk solution rather than during the electrospray ionization process and that the observed fragmentation site preferences can be rationalized through the structure and interactions within these native oligomers rather than the monomer. We also show that the observed fragmentation pattern─and indeed, whether or not fragmentation occurs─is highly sensitive to the provenance and history of the protein samples, to the extent that samples can show distinct fragmentation behavior despite behaving identically in ion mobility experiments. This rather underexplored method therefore represents an exquisitely sensitive conformational probe and will hopefully receive more attention from the biomolecular mass spectrometry community in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.3c00106 | DOI Listing |
Cardiol Rev
December 2024
Department of Hospital Medicine, Cheshire Medical Center/Dartmouth Health Keene, NH.
Atrial fibrillation (AF) catheter ablation is safe and effective, though rare cases of takotsubo syndrome (TTS) have been observed without proven causation. This review synthesizes TTS following AF ablation case reports and series. Until October 2024, PubMed/Medline, SCOPUS, and Google Scholar were searched for AF ablation and TTS case reports and series.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
Our choices are typically accompanied by a feeling of confidence-an internal estimate that they are correct. Correctness, however, depends on our goals. For example, exploration-exploitation problems entail a tension between short- and long-term goals: finding out about the value of one option could mean foregoing another option that is apparently more rewarding.
View Article and Find Full Text PDFCell Rep
January 2025
Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:
Understanding how corticostriatal circuits mediate behavioral selection and initiation in a naturalistic setting is critical to understanding behavior choice and execution in unconstrained situations. The central striatum (CS) is well poised to play an important role in these spontaneous processes. Using fiber photometry and optogenetics, we identify a role for CS in grooming initiation.
View Article and Find Full Text PDFBackground: The Amyloid-Tau-Neurodegeneration (ATN) biomarker framework for Alzheimer's disease (AD) indicates binary (presence/absence) designations for each type of pathology, without regard for anatomical distribution. Neurodegeneration is designated as positive if atrophy or hypometabolism are found on imaging. However, Clifford Jack et al.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
All India Institute of Medical Sciences, AIIMS, New Delhi, Delhi, India.
Background: Alzheimer's disease (AD) is a progressive brain disorder which leads to gradual decline in memory, thinking, behaviour and social skills. The current scenario for drug development is based on neuro-inflammation and oxidative stress. Amyloid-β (Aβ) deposition, a major hallmark of the disease activates microglia leading to neuro-inflammation and neuro-degeneration induced by activation of COX-2 via NFkB p50 in glioblastoma cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!