Value-Added Squalene in Single-Cell Oil Produced with for Food Applications.

J Agric Food Chem

TUM School of Natural Sciences, Department of Chemistry, Werner Siemens-Chair for Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, Garching 85748, Germany.

Published: June 2023

Single-cell oil (SCO) produced by oleaginous microorganisms is potentially a more land-efficient and sustainable alternative to vegetable oil. The cost of SCO production can be reduced by value-added co-products like squalene, a highly relevant compound for the food, cosmetic, and pharmaceutical industry. For the first time, squalene in the oleaginous yeast was analyzed, reaching 172.95 ± 61.31 mg/100 g oil in a lab-scale bioreactor. Using the squalene monooxygenase inhibitor terbinafine, cellular squalene was significantly increased to 2169 ± 262 mg/100 g SCO, while the yeast remained highly oleaginous. Further, SCO from a 1000 L scale production was chemically refined. The squalene content in the deodorizer distillate (DD) was found to be higher than that in DD from typical vegetable oils. Overall, this study demonstrates squalene as a value-added compound in SCO from for application in food and cosmetics without the use of genetic modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c01703DOI Listing

Publication Analysis

Top Keywords

single-cell oil
8
squalene
6
sco
5
value-added squalene
4
squalene single-cell
4
oil
4
oil produced
4
produced food
4
food applications
4
applications single-cell
4

Similar Publications

Association of Metabolic Diseases and Moderate Fat Intake with Myocardial Infarction Risk.

Nutrients

December 2024

Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro97bungil, BaeBang-Yup, Asan 31499, Republic of Korea.

Background: Myocardial infarction (MI) can range from mild to severe cardiovascular events and typically develops through complex interactions between genetic and lifestyle factors.

Objectives: We aimed to understand the genetic predisposition associated with MI through genetic correlation, colocalization analysis, and cells' gene expression values to develop more effective prevention and treatment strategies to reduce its burden.

Methods: A polygenic risk score (PRS) was employed to estimate the genetic risk for MI and to analyze the dietary interactions with PRS that affect MI risk in adults over 45 years ( = 58,701).

View Article and Find Full Text PDF

Deficiency of Endothelial Impairs Pulmonary Vascular Angiogenesis and Predisposes Pulmonary Hypertension.

Hypertension

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, China. (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.).

Background: Mechanosensitive Piezo1 channel plays a key role in pulmonary hypertension (PH). However, the role of Piezo2 in PH remains unclear.

Methods: Endothelial cell (EC)-specific knockout (, Tek-Cre; ) rats and primarily cultured pulmonary microvascular ECs were used to determine the role of Piezo2 in PH.

View Article and Find Full Text PDF

PIM1 instigates endothelial-to-mesenchymal transition to aggravate atherosclerosis.

Theranostics

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.

Article Synopsis
  • Endothelial-to-mesenchymal transition (EndMT) is a process where endothelial cells transform into a different cell type, contributing to the dysfunction that initiates atherosclerosis, but the exact triggers in atherosclerotic environments are not well understood.
  • Research involving single-cell sequencing in mice on a high-fat diet showed that PIM1, a protein, is expressed in both endothelial cells and atherosclerotic lesions and plays a crucial role in the progression of atherosclerosis.
  • Knockdown of PIM1 in endothelial cells reduced atherosclerosis and EndMT by affecting key proteins and pathways associated with cell transformation, suggesting that targeting this pathway could be a potential therapeutic approach.
View Article and Find Full Text PDF

Tunable Picoliter-Scale Dropicle Formation Using Amphiphilic Microparticles with Patterned Hydrophilic Patches.

Adv Sci (Weinh)

December 2024

Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany.

Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated.

View Article and Find Full Text PDF

Most of the microbes in nature infrequently receive nutrients and are thus in slow- or non-growing states. How quickly they can resume their growth upon an influx of new resources is crucial to occupy environmental niches. Isogenic microbial populations are known to harbor only a fraction of cells with rapid growth resumption, yet little is known about the physiological characteristics of those cells and their emergence in the population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!