We report herein a series of neutral -thiocyanate mononuclear spin crossover (SCO) complexes, [FeL(NCS)] (-), based on tetradentate ligands L obtained by reaction of N-substituted 1,2,3-triazolecarbaldehyde with 1,3-propanediamine or 2,2-dimethyl-1,3-diaminopropane [L = ,-bis((1,5-dimethyl-1-1,2,3-triazol-4-yl)methylene)propane-1,3-diamine/-2,2-dimethylpropane-1,3-diamine, / and ,-bis((1-ethyl/1-propyl-1-1,2,3-triazol-4-yl)methylene)-2,2-dimethylpropane-1,3-diamine, /]. The thermal-induced SCO behavior is characterized by abrupt transitions with an average critical temperature (Δ)/hysteresis loop width (Δ) in the range 190-252/5-14 K, while the photo-generated metastable high-spin (HS) phases are characterized by temperatures in the range 44-59 K. Single crystal analysis shows that except , all compounds experience reversible symmetry breaking coupled with the thermal SCO. Furthermore, experiences an additional phase transition at ca. 290 K responsible for the coexistence of two HS phases quenched at 10 K through LIESST and TIESST effects. The molecules form hexagonally packed arrays sustained by numerous weak CH···S and C···C/S···C/N···C bonds involving polar coordination cores, while non-polar pendant aliphatic substituents are segregated inside, occupying hexagonal channels. Energy framework analysis of complexes with one step SCO transition (, and ) shows a correlation between the cooperativity and the amplitude of changes in the molecule-molecule interactions in the lattice at the SCO transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265696PMC
http://dx.doi.org/10.1021/acs.inorgchem.3c00830DOI Listing

Publication Analysis

Top Keywords

symmetry breaking
8
phase transition
8
spin crossover
8
based tetradentate
8
tetradentate ligands
8
sco transition
8
sco
5
order-disorder symmetry
4
breaking crystallographic
4
crystallographic phase
4

Similar Publications

Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.

View Article and Find Full Text PDF

Effect of Exact Exchange on the Energy Landscape in Self-Consistent Field Theory.

J Chem Theory Comput

January 2025

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Density functional approximations can reduce the spin symmetry breaking observed for self-consistent field (SCF) solutions compared to Hartree-Fock theory, but the amount of exact Hartree-Fock (HF) exchange appears to be a key determinant in broken symmetry. To elucidate the precise role of exact exchange, we investigate the energy landscape of unrestricted Hartree-Fock and Kohn-Sham density functional theory for benzene and square cyclobutadiene, which provide paradigmatic examples of closed-shell and open-shell electronic structures, respectively. We find that increasing the amount of exact exchange leads to more local SCF minima, which can be characterized as combinatorial arrangements of unpaired electrons in the carbon π system.

View Article and Find Full Text PDF

Enhancing valley splitting and anomalous valley Hall effect in the V-doped Janus MoSeTe monolayer.

Phys Chem Chem Phys

January 2025

School of Physics and Electrical Engineering, Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.

Exploring valleytronics in two-dimensional materials is of great significance for the development of advanced information devices. In this study, we investigate the valley polarization and electronic properties of V-doped 2H-phase Janus MoSeTe by using first-principles calculations. Our results reveal a remarkable valley spin splitting up to 60 meV, driven by the breaking of time-reversal symmetry due to the magnetic effect of V 3d orbitals.

View Article and Find Full Text PDF

Two-dimensional (2D) van der Waals heterostructures consist of different 2D crystals with diverse properties, constituting the cornerstone of the new generation of 2D electronic devices. Yet interfaces in heterostructures inevitably break bulk symmetry and structural continuity, resulting in delicate atomic rearrangements and novel electronic structures. In this paper, we predict that 2D interfaces undergo "spontaneous curvature", which means when two flat 2D layers approach each other, they inevitably experience out-of-plane curvature.

View Article and Find Full Text PDF

Monolayer atomic thin films of group-V elements have a high potential for application in spintronics and valleytronics because of their unique crystal structure and strong spin-orbit coupling. We fabricated Sb and Bi monolayers on a SiC(0001) substrate by the molecular-beam-epitaxy method and studied the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. The fabricated Sb film shows the (√3×√3)R30º superstructure associated with the formation of ⍺-Sb, and exhibits a semiconducting nature with a band gap of more than 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!