Heart failure with preserved ejection fraction (HFpEF) is characterized by obesity, hypertension, diabetes mellitus, and chronic kidney disease. Obese ZSF1 rats, a model of HFpEF, exhibit multiple such comorbidities that can disturb cardiac function. Little attention has been paid to how these comorbidities affect renal disease in ZSF1 rats. HFpEF is found predominantly in women in whom obesity and hypertension are particularly prevalent. Therefore, we characterized the renal phenotype in female and male lean and obese ZSF1 rats and investigated additional effects of worsened hypertension on disease severity. Systolic blood pressure and renal function were assessed biweekly from 12 to 26 wk. From 19 wk, rats were implanted with either a deoxycorticosterone acetate pellet and fed a high-salt diet (DS) or a placebo pellet and fed a normal-salt diet. At 26 wk of age, terminal glomerular filtration rate was assessed via inulin clearance under isoflurane. Renal sections were processed for histological analysis. Lean and obese ZSF1 rats, both female and male, were mildly hypertensive (systolic blood pressure: 140-150 mmHg). All obese ZSF1 rats showed HFpEF. In female normoglycemic ZSF1 rats, obesity associated with mild proteinuria, decreased glomerular filtration rate, and glomerular hypertrophy. DS-worsened hypertension enhanced proteinuria and triggered glomerulosclerosis. Male obese ZSF1 rats were hyperglycemic and showed proteinuria, glomerular hypertrophy and sclerosis, and tubulointerstitial damage. DS-worsened hypertension aggravated this phenotype in male ZSF1 rats. In conclusion, female obese ZSF1 rats develop mild renal dysfunction and DS-worsened hypertension compromises renal function and structure in normoglycemic female obese ZSF1 rats as in hyperglycemic male obese ZSF1 rats. Chronic kidney disease coexists with heart failure with a preserved ejection fraction (HFpEF), which is associated with multiple comorbidities and the female sex. We showed that obese, mildly hypertensive female ZSF1 rats, an animal model for HFpEF, simultaneously develop renal disease with diastolic dysfunction. Exacerbation of their hypertension, a comorbidity highly prevalent in HFpEF, compromised renal function and structure similarly in normoglycemic obese female ZSF1 rats and hyperglycemic obese male ZSF1 rats.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00286.2022DOI Listing

Publication Analysis

Top Keywords

zsf1 rats
60
obese zsf1
32
rats
16
zsf1
15
female male
12
obese
12
male obese
12
renal function
12
ds-worsened hypertension
12
rats hyperglycemic
12

Similar Publications

Background: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.

View Article and Find Full Text PDF

Aims: ZSF1 obese rats harbouring two mutant leptin receptor alleles (Lepr and Lepr) develop metabolic syndrome and heart failure with preserved ejection fraction (HFpEF), making them a widely used animal model in cardiometabolic research. Studies using ZSF1 rats have contributed significantly to the elucidation of pathophysiological mechanisms underlying HFpEF and therapeutic strategies against this multi-organ syndrome. In contrast, hybrid, lean ZSF1 rats (L-ZSF1) do not develop HFpEF and generally serve as controls, disregarding the possibility that the presence of one mutant Lepr allele might affect left ventricular ejection fraction (LVEF), diastolic dysfunction and other relevant HFpEF parameters, such as N-terminal pro-brain natriuretic peptide (NT-proBNP) levels and cardiac inflammation, which could increase during disease manifestation.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). Despite the entry of sodium glucose cotransporter 2 (SGLT2) inhibitors, CKD persists as a medical challenge. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition reduces low-density lipoprotein (LDL)-cholesterol, a major risk factor of CVD.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) accounts for ~50% of HF cases, with no effective treatments. The ZSF1-obese rat model recapitulates numerous clinical features of HFpEF including hypertension, obesity, metabolic syndrome, exercise intolerance, and LV diastolic dysfunction. Here, we utilized a systems-biology approach to define the early metabolic and transcriptional signatures to gain mechanistic insight into the pathways contributing to HFpEF development.

View Article and Find Full Text PDF

A timeline study on vascular co-morbidity induced cerebral endothelial dysfunction assessed by perfusion MRI.

Neurobiol Dis

November 2024

Center for Molecular and Vascular Biology (CMVB), Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; School for Cardiovascular Diseases (CARIM), Department of Cardiology, Maastricht University, 6200 Maastricht, the Netherlands. Electronic address:

Endothelial dysfunction is considered a key element in the early pathogenesis of neurodegenerative disorders. Dysfunction of the cerebral endothelial cells can result in dysregulation of cerebral perfusion and disruption of the Blood Brain Barrier (BBB), leading to brain damage, neurodegeneration and cognitive decline. It has been shown that the presence of modifiable risk factors exacerbates endothelial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!