Purpose: SYNB1891 is a live, modified strain of the probiotic Escherichia coli Nissle 1917 (EcN) engineered to produce cyclic dinucleotides under hypoxia, leading to STimulator of INterferon Genes (STING) activation in phagocytic antigen-presenting cells in tumors and activating complementary innate immune pathways.

Patients And Methods: This first-in-human study (NCT04167137) enrolled participants with refractory advanced cancers to receive repeat intratumoral injections of SYNB1891 either alone or in combination with atezolizumab, with the primary objective of evaluating the safety and tolerability of both regimens.

Results: Twenty-four participants received monotherapy across six cohorts, and 8 participants received combination therapy in two cohorts. Five cytokine release syndrome events occurred with monotherapy, including one that met the criteria for dose-limiting toxicity at the highest dose; no other SYNB1891-related serious adverse events occurred, and no SYNB1891-related infections were observed. SYNB1891 was not detected in the blood at 6 or 24 hours after the first intratumoral dose or in tumor tissue 7 days following the first dose. Treatment with SYNB1891 resulted in activation of the STING pathway and target engagement as assessed by upregulation of IFN-stimulated genes, chemokines/cytokines, and T-cell response genes in core biopsies obtained predose and 7 days following the third weekly dose. In addition, a dose-related increase in serum cytokines was observed, as well as stable disease in 4 participants refractory to prior PD-1/L1 antibodies.

Conclusions: Repeat intratumoral injection of SYNB1891 as monotherapy and in combination with atezolizumab was safe and well tolerated, and evidence of STING pathway target engagement was observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225568PMC
http://dx.doi.org/10.1158/1078-0432.CCR-23-0118DOI Listing

Publication Analysis

Top Keywords

coli nissle
8
participants refractory
8
repeat intratumoral
8
combination atezolizumab
8
participants received
8
events occurred
8
sting pathway
8
pathway target
8
target engagement
8
synb1891
6

Similar Publications

Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug.

View Article and Find Full Text PDF

In mammals, Trimethylamine N-oxide (TMAO) is involved in various physiological processes, and is considered a biomarker for multiple diseases. As a natural molecule found in marine organisms, TMAO is also an important indicator of seafood freshness. In this study, a TMAO biosensor was developed in harnessing TorRST two-component system.

View Article and Find Full Text PDF

Although immune checkpoint inhibitors specifically targeting the PD-1/PD-L1 axis have exhibited remarkable clinical success, they are not uniformly effective across all patient cohorts. Immunotoxins, a novel class of cancer therapeutics, offering a promising alternative. PD-L1, which is also present in certain normal tissues, limits its suitability as an ideal target for immunotoxins.

View Article and Find Full Text PDF

This study was conducted to evaluate the effects of E.coli Nissle 1917 (EcN) on immune responses, blood parameters, oxidative stress, egg quality, and performance of laying Japanese quail. A total of one-hundred day-old quail chicks were assigned to 1 of 4 treatments based on probiotic concentration: 1 (0 CFU/mL; control), 2 (10 CFU/mL), 3 (10 CFU/mL), and 4 (10 CFU/mL).

View Article and Find Full Text PDF

Genetically Encoded Biosensors for Constrained Biological Functions in Probiotic Nissle.

ACS Synth Biol

January 2025

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China.

The probiotic Nissle (EcN) is an exceptional strain that has attracted significant attention not only for its clinical efficacy in the treatment and prevention of gastrointestinal disorders but also as a burgeoning microbial chassis for living therapeutic applications. However, there is an immediate necessity to develop conditional expression systems that confine the activity of EcN specifically in the gastrointestinal tract, to avoid influencing the environment. Here, we constructed two genetically encoded interchangeable sensors responsive to body temperature at 37 °C, and small molecules such as protocatechuic acid (PCA), a metabolite found in green tea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!