Oligodendrocyte precursor cells (OPCs) generate oligodendrocytes, a process that may be tuned by neuronal activity, possibly via synaptic connections to OPCs. However, a developmental role of synaptic signaling to OPCs has so far not been shown unequivocally. To address this question, we comparatively analyzed functional and molecular characteristics of highly proliferative and migratory OPCs in the embryonic brain. Embryonic OPCs in mice (E18.5) shared the expression of voltage-gated ion channels and their dendritic morphology with postnatal OPCs, but almost completely lacked functional synaptic currents. Transcriptomic profiling of PDGFRα  OPCs revealed a limited abundance of genes coding for postsynaptic signaling and synaptogenic cell adhesion molecules in the embryonic versus the postnatal period. RNA sequencing of single OPCs showed that embryonic synapse-lacking OPCs are found in clusters distinct from postnatal OPCs and with similarities to early progenitors. Furthermore, single-cell transcriptomics demonstrated that synaptic genes are transiently expressed only by postnatal OPCs until they start to differentiate. Taken together, our results indicate that embryonic OPCs represent a unique developmental stage biologically resembling postnatal OPCs but without synaptic input and a transcriptional signature in the continuum between OPCs and neural precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24388DOI Listing

Publication Analysis

Top Keywords

postnatal opcs
16
opcs
13
oligodendrocyte precursor
8
precursor cells
8
synaptic connections
8
opcs embryonic
8
embryonic opcs
8
synaptic
6
embryonic
5
postnatal
5

Similar Publications

The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination.

Biochem Biophys Res Commun

January 2025

Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan. Electronic address:

Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation.

View Article and Find Full Text PDF

Nuclear receptor PPARγ targets GPNMB to promote oligodendrocyte development and remyelination.

Brain

January 2025

Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.

Myelin injury occurs in brain ageing and in several neurological diseases. Failure of spontaneous remyelination is attributable to insufficient differentiation of oligodendrocyte precursor cells (OPCs) into mature myelin-forming oligodendrocytes in CNS demyelinated lesions. Emerging evidence suggests that peroxisome proliferator-activated receptor γ (PPARγ) is the master gatekeeper of CNS injury and repair and plays an important regulatory role in various neurodegenerative diseases.

View Article and Find Full Text PDF

Effect of Cytoskeletal Linker Protein GAS2L1 on Oligodendrocyte and Myelin Development.

Glia

January 2025

Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.

Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS), develop from OL precursor cells (OPCs) through a complex process involving significant morphological changes that are critically dependent on the dynamic interactions between cytoskeletal networks. Growth arrest-specific 2-like protein 1 (GAS2L1) is a cytoskeletal linker protein that mediates the cross-talk between actin filaments and microtubules. However, its role in OL and myelin development remains unknown.

View Article and Find Full Text PDF

Unlabelled: Complex neurodevelopmental disorders involve motor as well as cognitive dysfunction and these impairments are associated with both cerebral and cerebellar maturity. A network of connections between these two brain regions is proposed to underlie neurodevelopmental impairments. The cerebellar gray matter has a protracted developmental timeline compared to the cerebral cortex, however, making the association of these relay pathways unclear for neurodevelopmental disabilities.

View Article and Find Full Text PDF

Cellular reprogramming of mammalian glia to an induced neuronal fate holds the potential for restoring diseased brain circuits. While the proneural factor () is widely used for neuronal reprogramming, in the early postnatal mouse cortex, fails to induce the glia-to-neuron conversion, instead promoting the proliferation of oligodendrocyte progenitor cells (OPC). Since Ascl1 activity is posttranslationally regulated, here, we investigated the consequences of mutating six serine phospho-acceptor sites to alanine (Ascl1SA6) on lineage reprogramming in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!