Background: Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is involved in the stress response and may play a key role in mood disorders, but no information is available on PACAP for the human brain in relation to mood disorders.

Methods: PACAP-peptide levels were determined in a major stress-response site, the hypothalamic paraventricular nucleus (PVN), of people with major depressive disorder (MDD), bipolar disorder (BD) and of a unique cohort of Alzheimer's disease (AD) patients with and without depression, all with matched controls. The expression of PACAP-(Adcyap1mRNA) and PACAP-receptors was determined in the MDD and BD patients by qPCR in presumed target sites of PACAP in stress-related disorders, the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC).

Results: PACAP cell bodies and/or fibres were localised throughout the hypothalamus with differences between immunocytochemistry and hybridisation. In the controls, PACAP-immunoreactivity-(ir) in the PVN was higher in women than in men. PVN-PACAP-ir was higher in male BD compared to the matched male controls. In all AD patients, the PVN-PACAP-ir was lower compared to the controls, but higher in AD depressed patients compared to those without depression. There was a significant positive correlation between the Cornell depression score and PVN-PACAP-ir in all AD patients combined. In the ACC and DLPFC, alterations in mRNA expression of PACAP and its receptors were associated with mood disorders in a differential way depending on the type of mood disorder, suicide, and psychotic features.

Conclusion: The results support the possibility that PACAP plays a role in mood disorder pathophysiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10755247PMC
http://dx.doi.org/10.1017/S0033291723001265DOI Listing

Publication Analysis

Top Keywords

pituitary adenylate
8
adenylate cyclase-activating
8
cyclase-activating polypeptide
8
major depressive
8
depressive disorder
8
bipolar disorder
8
alzheimer's disease
8
prefrontal cortex
8
role mood
8
mood disorders
8

Similar Publications

Pituitary adenylate cyclase-activating polypeptide (PACAP) affects rodents' stress-related behaviors, such as anxiety-like behavior or fear conditioning. However, previous studies have investigated the effect of intracerebroventricular, but not hippocampal, injection of this PAC1R-selective antagonist (PACAP-6-38) on anxiety-like behavior. However, it has been reported that administration of PACAP-6-38 to the dorsal hippocampus reduces the fear response in a fear conditioning test.

View Article and Find Full Text PDF

Introduction: Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic and debilitating condition marked by bladder pain, urinary urgency, and frequency. The pathophysiology of IC/BPS remains poorly understood, with limited therapeutic options available. The role of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptor PAC1 in IC/BPS has not been thoroughly investigated, despite their potential involvement in inflammation and sensory dysfunction.

View Article and Find Full Text PDF

Introduction: The Efferent Vestibular System (EVS) originates in brainstem Efferent Vestibular Nuclei (EVN) and modifies afferent vestibular signals at their source, in peripheral vestibular organs. Recent evidence suggests that EVS is also involved in the development of motion sickness symptoms, including vertigo and nausea, but the underlying mechanism is unknown. One possible link between EVN and motion sickness symptoms is through the neuropeptide calcitonin gene-related peptide (CGRP).

View Article and Find Full Text PDF

The adrenal medulla is a key effector of the sympathetic nervous system in the periphery. Its primary function is to translate variations in sympathetic activity into hormone outputs that modify end organ function throughout the body. These hormones include epinephrine, norepinephrine, and a variety of vasoactive peptides.

View Article and Find Full Text PDF

Neuropeptide-mediated activation of astrocytes improves stress resilience in mice by modulating cortical neural synapses.

Acta Pharmacol Sin

December 2024

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Astrocytes are known to modulate synaptogenesis or neuronal activities, thus participating in mental functions. It has been shown that astrocytes are involved in the antidepressant mechanism. In this study we investigated the potential hormonal mediator governing the astrocyte-neuron interplay for stress-coping behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!