Protein-protein interactions (PPIs), in general, are attractive yet challenging drug targets. As a typical PPI, MTDH-SND1 interaction has recently been reported to be a promising drug target to malignant breast cancer and other cancer types. However, the lack of well-defined deep pockets on the MTDH-SND1 interface makes it a tough target for rational drug discovery attempts. To address this issue, in this study, a long time-scale molecular dynamics (MD) simulation-driven focused screening strategy was proposed and reported. A total of 12 virtual hits were purchased and tested in SPR assay, yielding 10 SND1 binders with micromolar or less affinities. As an example, compound , the second best hit with a of 2.64 μM, was further assayed in MDA-MB-231 breast cancer cells, showing an antiproliferation IC value of 57 μM in a CCK8 assay with a dampened interruption between MTDH and SND1 proteins detected by immunofluorescence colocalization imaging. As the most potent small molecule inhibitor in the class so far, our preliminary study combining molecular dynamics simulation and cellular functional evidence indicates could serve as a lead compound for future optimization or pharmacologic studies, and the MD-driven focused screening strategy could be useful for other PPI drug discovery attempts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c00310 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Urology, Affiliated Xi'an Peoples Hospital (Xi'an Fourth Hospital) of Northwest University, Xi'an, 710000, China.
Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFAcc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Departmento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.
Data analysis is a major task for Computational Chemists. The diversity of modeling tools currently available in Computational Chemistry requires the development of flexible analysis tools that can adapt to different systems and output formats. As a contribution to this need, we report the implementation of goChem, a versatile open-source library for multiscale analysis of computational chemistry data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!