Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sepsis is a serious complication of liver cirrhosis. This study aimed to develop a risk prediction model for sepsis among patients with liver cirrhosis. A total of 3130 patients with liver cirrhosis were enrolled from the Medical Information Mart for Intensive Care IV database, and randomly assigned into training and validation cohorts in a 7:3 ratio. The least absolute shrinkage and selection operator (LASSO) regression was used to filter variables and select predictor variables. Multivariate logistic regression was used to establish the prediction model. Based on LASSO and multivariate logistic regression, gender, base excess, bicarbonate, white blood cells, potassium, fibrinogen, systolic blood pressure, mechanical ventilation, and vasopressor use were identified as independent risk variables, and then a nomogram was constructed and validated. The consistency index (C-index), receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) were used to measure the predictive performance of the nomogram. As a result of the nomogram, good discrimination was achieved, with C-indexes of 0.814 and 0.828 for the training and validation cohorts, respectively, and an area under the curve of 0.849 in the training cohort and 0.821 in the validation cohort. The calibration curves demonstrated good agreement between the predictions and observations. The DCA curves showed the nomogram had significant clinical value. We developed and validated a risk-prediction model for sepsis in patients with liver cirrhosis. This model can assist clinicians in the early detection and prevention of sepsis in patients with liver cirrhosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582674 | PMC |
http://dx.doi.org/10.1111/cts.13549 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!