Identification of small molecules capable of enhancing viral membrane fusion.

Virol J

Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain.

Published: May 2023

Several approaches have been developed to analyze the entry of highly pathogenic viruses. In this study, we report the implementation of a Bimolecular Multicellular Complementation (BiMuC) assay to safely and efficiently monitor SARS-CoV-2 S-mediated membrane fusion without the need for microscopy-based equipment. Using BiMuC, we screened a library of approved drugs and identified compounds that enhance S protein-mediated cell-cell membrane fusion. Among them, ethynylestradiol promotes the growth of SARS-CoV-2 and Influenza A virus in vitro. Our findings demonstrate the potential of BiMuC for identifying small molecules that modulate the life cycle of enveloped viruses, including SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206591PMC
http://dx.doi.org/10.1186/s12985-023-02068-1DOI Listing

Publication Analysis

Top Keywords

membrane fusion
12
small molecules
8
identification small
4
molecules capable
4
capable enhancing
4
enhancing viral
4
viral membrane
4
fusion approaches
4
approaches developed
4
developed analyze
4

Similar Publications

Gynecological cancers present significant treatment challenges due to drug resistance and adverse side effects. This review explores advancements in lysosomal escape mechanisms, essential for enhancing nano-therapeutic efficacy. Strategies such as pH-sensitive linkers and membrane fusion are examined, showcasing their potential to improve therapeutic outcomes in ovarian, cervical, and uterine cancers.

View Article and Find Full Text PDF

Mining Druggable Sites in Influenza A Hemagglutinin: Binding of the Pinanamine-Based Inhibitor M090.

ACS Med Chem Lett

January 2025

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació - Campus Torribera, Universitat de Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.

Assessing the binding mode of drug-like compounds is key in structure-based drug design. However, this may be challenged by factors such as the structural flexibility of the target protein. In this case, state-of-the-art computational methods can be valuable to explore the linkages between structural and pharmacological data.

View Article and Find Full Text PDF

Chemistries on the inner leaflet of the cell membrane.

Chem Commun (Camb)

January 2025

Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.

The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry.

View Article and Find Full Text PDF

Dense-core vesicles (DCVs) are found in various types of cells, such as neurons, pancreatic β-cells, and chromaffin cells. These vesicles release transmitters, peptides, and hormones to regulate diverse functions, such as the stress response, immune response, behavior, and blood glucose levels. In traditional electron microscopy after chemical fixation, it is often reported that the dense cores occupy a portion of the vesicle towards the center and are surrounded by a clear halo.

View Article and Find Full Text PDF

Peptidisc-Assisted Hydrophobic Clustering Toward the Production of Multimeric and Multispecific Nanobody Proteins.

Biochemistry

January 2025

Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.

Multimerization is a powerful engineering strategy for enhancing protein structural stability, diversity and functional performance. Typical methods for clustering proteins include tandem linking, fusion to self-assembly domains and cross-linking. Here we present a novel approach that leverages the Peptidisc membrane mimetic to stabilize hydrophobic-driven protein clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!