Epigenetic marks and associated traits can be transmitted for one or more generations, phenomena known respectively as inter- or transgenerational epigenetic inheritance. It remains unknown if genetically and conditionally induced aberrant epigenetic states can influence the development of the nervous system across generations. Here, we show, using as a model system, that alteration of H3K4me3 levels in the parental generation, caused by genetic manipulation or changes in parental conditions, has, respectively, trans- and intergenerational effects on H3K4 methylome, transcriptome, and nervous system development. Thus, our study reveals the relevance of H3K4me3 transmission and maintenance in preventing long-lasting deleterious effects in nervous system homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209521 | PMC |
http://dx.doi.org/10.26508/lsa.202301970 | DOI Listing |
Hum Brain Mapp
January 2025
Department of Psychology, Concordia University, Montreal, Quebec, Canada.
The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.
View Article and Find Full Text PDFMol Med Rep
March 2025
State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China.
Subarachnoid hemorrhage (SAH), a prevalent cerebrovascular condition associated with a high mortality rate, frequently results in neuronal apoptosis and an unfavorable prognosis. The adjunctive use of traditional Chinese medicine (TCM) with surgical interventions exerts a therapeutic impact on SAH, potentially by facilitating apoptosis. However, the mechanism by which TCM mediates apoptosis following SAH remains unclear.
View Article and Find Full Text PDFVet Q
December 2025
Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics.
View Article and Find Full Text PDFEmerg Med Australas
February 2025
Addiction Psychiatry and Toxicology, Northern Health, Melbourne, Victoria, Australia.
Serotonin toxicity is a potentially fatal condition caused by increased serotonergic activity in the central nervous system. Cyproheptadine, a serotonergic antagonist, is recommended for treatment; however, there is a lack of evidence to support its use. The present study aimed to evaluate the evidence for the use of cyproheptadine in the management of serotonin toxicity following deliberate self-poisoning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!