Objective: Exposure to bisphenol A (BPA) has been shown to increase the prevalence of obesity and its related insulin resistance (IR). Ceramide is a sphingolipid known to facilitate the production of proinflammatory cytokines and subsequently exacerbate inflammation and IR during the progression of obesity. Here, we investigated the effects of BPA exposure on ceramide de novo synthesis and whether increased ceramides aggravate adipose tissue (AT) inflammation and obesity-related IR.

Methods: A population-based case-control study was conducted to explore the relationship between BPA exposure and IR and the potential role of ceramide in AT in obesity. Next, we used mice reared on a normal chow diet (NCD) or a high-fat diet (HFD) to verify the results from the population study and then investigated the role of ceramides in low-level BPA exposure with HFD-induced IR and AT inflammation in mice treated with or without myriocin (an inhibitor of the rate-limiting enzyme in de novo ceramide synthesis).

Results: BPA levels are higher in obese individuals and are significantly associated with AT inflammation and IR. Specific subtypes of ceramides mediated the associations between BPA and obesity, obesity-related IR and AT inflammation in the obesity group. In animal experiments, BPA exposure facilitated ceramide accumulation in AT, activated PKCζ, promoted AT inflammation, increased the expression and secretion of proinflammatory cytokines via the JNK/NF-κB pathway, and lowered insulin sensitivity by disrupting IRS1-PI3K-AKT signaling in mice fed a HFD. Myriocin suppressed BPA-induced AT inflammation and IR.

Conclusion: These findings indicate that BPA aggravates obesity-induced IR, which is partly via increased de novo synthesis of ceramides and subsequent promotion of AT inflammation. Ceramide synthesis could be a potential target for the prevention of environmental BPA exposure-related metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250932PMC
http://dx.doi.org/10.1016/j.molmet.2023.101741DOI Listing

Publication Analysis

Top Keywords

bpa exposure
16
bpa
9
novo ceramide
8
ceramide synthesis
8
proinflammatory cytokines
8
inflammation
8
novo synthesis
8
ceramide
7
exposure
6
obesity
6

Similar Publications

Bisphenol A (BPA) is an "environmental obesogen" and this study aims to investigate the intergenerational impacts of BPA-induced metabolic syndrome (MetS), specifically focusing on unraveling mechanisms. Exposure to BPA induces metabolic disorders in the paternal mice, which are then transmitted to offspring, leading to late-onset MetS. Mechanistically, BPA upregulates Srebf1, which in turn promotes the Pparg-dependent transcription of Dicer1 in spermatocytes, increasing the levels of multiple sperm microRNAs (miRNAs).

View Article and Find Full Text PDF

Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as "CRC" and "chemical carcinogenesis-receptor activation", implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity.

View Article and Find Full Text PDF

BPZ inhibits early mouse embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function.

Ecotoxicol Environ Saf

January 2025

NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China. Electronic address:

The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation.

View Article and Find Full Text PDF

Background/objectives: Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with hormone regulation, leading to adverse health outcomes. Despite the wide use of EDCs in daily products like plastics, personal care items, and food packaging, public awareness remains low. Pregnant women and new mothers are particularly vulnerable, as exposure to EDCs during early life stages can have long-term health impacts.

View Article and Find Full Text PDF

Bisphenol A (BPA), extensively utilized in the manufacture of epoxy resins and polycarbonate plastics, is prevalent in the environment. Its exposure has been associated with an increased risk of hepatic lesions; however, the underlying mechanisms and the spectrum of its effects remain poorly understood. This study investigates the role of the Keap1-Nrf2 signaling pathway in regulating BPA-induced hepatotoxicity in vivo using a rat model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!