With the extensive application of halogenated aromatic compounds, including 2,4,6-Trichlorophenol (2,4,6-TCP), improper treatment or discharge contribute to persistently harmful effects on humans and the ecosystem, rendering the identification and monitoring of 2,4,6-TCP in the aquatic environment urgently required. In this study, a highly sensitive electrochemical platform was developed using active-edge-S and high-valence-Mo rich MoS/polypyrrole composites. MoS/PPy illustrates superior electrochemical performance and catalytic activity and has not been explored for detecting chlorinated phenols previously. The local environment of polypyrrole induces the richness of active edge S and a high oxidation state of Mo species in the composites, both of which endorse a sensitive anodic current response due to the favored oxidation of 2,4,6-TCP through nucleophilic substitution. Also, the higher complementarity between pyrrole and 2,4,6-TCP with respective electron-rich and electron-poor features through π-π stacking interactions enhances the specific detection capability of 2,4,6-TCP by the MoS/polypyrrole-modified electrode. The MoS/polypyrrole-modified electrode achieved a linear range of 0.1-260 μM with an ultralow limit of detection of 0.009 μM. Additionally, the structural stability boosted by the linkage of polypyrrole and MoS results in good resistance and satisfactory recovery in real water samples. The compiled results demonstrate that the proposed MoS/polypyrrole composite opens up a new potential to advance a sensitive, selective, facile fabrication, and low-cost platform for the on-site determination of 2,4,6-TCP in aquatic systems. The sensing of 2,4,6-TCP is important to monitor its occurrence and transport, and can also serve to track the effectiveness and adjust subsequent remediation treatments applied to contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139003DOI Listing

Publication Analysis

Top Keywords

active-edge-s high-valence-mo
8
electrochemical performance
8
aquatic environment
8
246-tcp aquatic
8
mos/polypyrrole-modified electrode
8
246-tcp
7
polypyrrole-induced active-edge-s
4
high-valence-mo reinforced
4
reinforced composites
4
composites boosted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!