Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Approximately 400 million people work and live in high-altitude areas and suffer from memory dysfunction worldwide. Until now, the role of the intestinal flora in plateau-induced brain damage has rarely been reported. To address this, we investigated the effect of intestinal flora on spatial memory impairment induced by high altitudes based on the microbiome-gut-brain axis theory. C57BL/6 mice were divided into three groups: control, high-altitude (HA), and high-altitude antibiotic treatment (HAA) group. The HA and HAA groups were exposed to a low-pressure oxygen chamber that simulated an altitude of 4000 m above sea level (m. a. s.l.) for 14 days, with the air pressure in the chamber set at 60-65 kPa. The results showed that spatial memory dysfunction induced by the high-altitude environment was aggravated by antibiotic treatment, manifesting as lowered escape latency and hippocampal memory-related proteins (BDNF and PSD-95). 16 S rRNA sequencing showed a remarkable separation of the ileal microbiota among the three groups. Antibiotic treatment exacerbated the reduced richness and diversity of the ileal microbiota in mice in the HA group. Lactobacillaceae were the main target bacteria and were significantly reduced in the HA group, which was exacerbated by antibiotic treatment. Meanwhile, reduced intestinal permeability and ileal immune function in mice exposed high-altitude environment was also aggravated by antibiotic treatment, as indicated by the lowered tight junction proteins and IL-1β and IFN-γ levels. Furthermore, indicator species analysis and Netshift co-analysis revealed that Lactobacillaceae (ASV11) and Corynebacteriaceae (ASV78, ASV25, and ASV47) play important roles in high-altitude exposure-induced memory dysfunction. Interestingly, ASV78 was negatively correlated with IL-1β and IFN-γ levels, indicating that ASV78 may be induced by reduced ileal immune function, which mediates high-altitude environment exposure-induced memory dysfunction. This study provides evidence that the intestinal flora is effective in preventing brain dysfunction caused by exposure to high-altitude environments, suggesting a relationship between the microbiome-gut-brain axis and altitude exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.115035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!