Cells latently infected with human immunodeficiency virus type 1 (HIV-1) prevent people living with HIV-1 from obtaining a cure to the infectious disease. Latency reversing agents (LRAs) such as protein kinase C (PKC) activators and histone deacetylase (HDAC) inhibitors can reactivate cells latently infected with HIV-1. Several trials based on treatment with HDAC inhibitors alone, however, failed to reduce the number of latent HIV-1 reservoirs. Herein, we have focused on a diacylglycerol (DAG)-lactone derivative, YSE028 (1), which is a PKC activator with latency reversing activity and no significant cytotoxicity. Caspase-3 activation of YSE028 (1) led to cell apoptosis, specifically in HIV-1 latently infected cells. Structure-activity relationship studies of YSE028 (1) have produced several useful derivatives. Among these, compound 2 is approximately ten times more potent than YSE028 (1) in reactivation of cells latently infected with HIV-1. The activity of DAG-lactone derivatives was correlated with the binding affinity for PKC and the stability against esterase-mediated hydrolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683555PMC
http://dx.doi.org/10.1016/j.ejmech.2023.115449DOI Listing

Publication Analysis

Top Keywords

latently infected
16
latency reversing
12
cells latently
12
dag-lactone derivatives
8
reversing activity
8
hdac inhibitors
8
infected hiv-1
8
hiv-1
7
synthesis evaluation
4
evaluation dag-lactone
4

Similar Publications

A predictive language model for SARS-CoV-2 evolution.

Signal Transduct Target Ther

December 2024

School of Basic Medical Science, Tsinghua University, 30 Shuangqing Rd., Haidian District, Beijing, 100084, China.

Modeling and predicting mutations are critical for COVID-19 and similar pandemic preparedness. However, existing predictive models have yet to integrate the regularity and randomness of viral mutations with minimal data requirements. Here, we develop a non-demanding language model utilizing both regularity and randomness to predict candidate SARS-CoV-2 variants and mutations that might prevail.

View Article and Find Full Text PDF

Background: Recent biomedical research has shown the unusual, multisystem effects of coronavirus disease 2019 in humans. One specific sequela of a primary severe acute respiratory syndrome coronavirus 2 infection is the reactivation of latent viruses in various tissues, such as Epstein-Barr virus. Epstein-Barr virus has been identified in many inflammatory gastrointestinal lesions, such as microscopic gastritides and colitides.

View Article and Find Full Text PDF

Epstein-Barr virus hijacks B cell metabolism to establish persistent infection and drive pathogenesis.

Trends Immunol

December 2024

Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.

When B cells engage in an immune response, metabolic reprogramming is key to meeting cellular energetic and biosynthetic demands. Epstein-Barr virus (EBV) is a highly prevalent gamma-herpesvirus, latently infecting B cells for the human host's lifetime. By hijacking signaling pathways of T cell-dependent humoral immunity, EBV activates B cells in a T cell-independent manner, forcing lymphoblastoid transformation.

View Article and Find Full Text PDF

Background: Exploring the cellular processes of genes from the aspects of biological networks is of great interest to understanding the properties of complex diseases and biological systems. Biological networks, such as protein-protein interaction networks and gene regulatory networks, provide insights into the molecular basis of cellular processes and often form functional clusters in different tissue and disease contexts.

Results: We present scGraph2Vec, a deep learning framework for generating informative gene embeddings.

View Article and Find Full Text PDF

Upon infection with the virus, cells increase the expression of cytidine deaminase APOBEC3 family genes. This leads to the accumulation of C-to-T mutations in the replicating viral genome and suppresses viral propagation. In contrast, herpesviruses, including Epstein-Barr virus (EBV), express genes that counteract APOBEC3 during lytic infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!