A numerical study on the diffusiophoresis of a droplet in an electrolyte medium is carried out by solving the full set of coupled governing equations, which are based on the conservation principle. Diffusiophoresis is considered for monovalent as well as non-z:z electrolytes and mixed electrolytes. The numerical model is supplemented with a semianalytic simplified model based on first-order perturbation analysis, which agrees with the numerical model for a low to moderate range of surface potential. The mobility for a low-viscosity fluid at a thinner Debye length is dominated by the chemiphoresis part, which creates the mobility to become an even function of the surface charge density for a monovalent electrolyte. Such a pattern in mobility does not appear in a non-z:z asymmetric electrolyte. At a thinner Debye length, diffusiophoresis becomes independent of the diffusion field, hence the mobility is independent of the composition of electrolytes in a mixed monovalent electrolyte solution. Our results show that the size-based sorting of droplets is efficient when a mixed electrolyte is considered. We have also addressed the finite ion size effects by considering a modified ion transport equation. One of the key features of the present study is the simplified semianalytical model for the diffusiophoresis of a droplet in a z:z electrolyte as well as in non-z:z and mixed electrolytes, which is shown to be valid up to a moderate range of surface potential for a finite Debye length.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c00697DOI Listing

Publication Analysis

Top Keywords

mixed electrolytes
12
debye length
12
electrolytes numerical
8
diffusiophoresis droplet
8
droplet electrolyte
8
well non-zz
8
electrolytes mixed
8
numerical model
8
moderate range
8
range surface
8

Similar Publications

The therapeutic benefit of the oral adsorbent drug AST-120 in chronic kidney disease (CKD) is related to an indoxyl sulfate (IS)-lowering action. Diabetes and dyslipidemia might worsen kidney damage in CKD. However, it is not known whether AST-120 influences lipid abnormalities as well as renal function in patients with CKD and diabetes.

View Article and Find Full Text PDF

Unlocking Solid-State Sodium-Metal Batteries at -15 °C by Electrolyte Optimization and Interface Regulation.

ACS Appl Mater Interfaces

December 2024

Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China.

Beta-AlO-based solid-state sodium metal batteries are some of the best options for large-scale energy storage systems because of their high energy density, high-level safety, and low cost. Nevertheless, their room-/low-temperature operation remains challenging due to low ionic conductivity of Beta-AlO electrolyte and weak solid-solid contact of the Na/Beta-AlO interface. Herein, an integrated strategy was developed via electrolyte optimization and interface regulation, in which Cu as a stabilizing agent was incorporated into Beta-AlO to improve density and ionic conductivity and the InS interface layer was introduced between the Na anode and solid electrolyte to induce the in situ formation of a mixed conductive layer (Na-In alloy and NaS).

View Article and Find Full Text PDF

Objectives: Daily-use fluoride products are first-line protection against enamel wear from dietary-acid exposure (DAE). This study aimed to understand effects of fluoride concentration, fluoride salt, product form and ingredients in daily-use products on remineralisation and demineralisation, via network meta-analysis (NMA) of 14 studies using one well-established in-situ model. Remineralisation (surface-microhardness recovery, SHMR) after treatment, and protection against subsequent demineralisation (acid-resistance ratio, ARR) were measured.

View Article and Find Full Text PDF

The direct CO2 reduction reaction (CO2RR) from simulated flue gas of various CO2 concentrations could minimize extra energy for pre-concentration processes to highly concentrated CO2 as a feed-stock. We investigate the challenges for CO2RR caused by low CO2 concentrations and provide strategies concerning the impact of the chosen electrocatalyst material and the selection of the electrolyte to attain high CO selectivity. We continuously feed CO2 mixed with N2 (the typical dilutant in flue gas) in various ratios to gas diffusion electrodes in a model flow-through electrolyzer.

View Article and Find Full Text PDF

Conjugated polymers (CPs) with polar side chains can conduct electronic and ionic charges simultaneously, making them promising for bioelectronics, electrocatalysis and energy storage. Recent work showed that adding alkyl spacers between CP backbones and polar side chains improved electronic charge carrier mobility, reduced swelling and enhanced stability, without compromising ion transport. However, how alkyl spacers impact polymer backbone conformation and, subsequently, electronic properties remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!