Genetic compensation is a remarkable biological concept to explain the genetic robustness in an organism to maintain its fitness and viability if there is a disruption occurred in the genetic variation by mutation. However, the underlying mechanism in genetic compensation remain unsolvable. The initial concept of genetic compensation has been studied in model organisms when there was a discrepancy between knockout-mediated and knockdown-mediated phenotypes. In the zebrafish model, several studies have reported that zebrafish mutants did not exhibit severe phenotype as shown in zebrafish morphants for the same genes. This phenomenon in zebrafish mutants but not morphants is due to the response of genetic compensation. In 2019, two amazing works partially uncovered genetic compensation could be triggered by the upregulation of compensating genes through regulating NMD and/or PTC-bearing mRNA in collaboration with epigenetic machinery in mutant zebrafish. In this review, we would like to update the recent advances and future perspectives of genetic compensation studies, which including the hypothesis of time-dependent involvement and addressing the discrepancy between knockout-mediated and knockdown-mediated to study gene function in the zebrafish model. At last, the study of genetic compensation could be a potential therapeutic strategy to treat human genetic disorder related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201552PMC
http://dx.doi.org/10.1016/j.gendis.2021.12.003DOI Listing

Publication Analysis

Top Keywords

genetic compensation
32
zebrafish model
12
genetic
11
advances future
8
future perspectives
8
perspectives genetic
8
compensation
8
compensation studies
8
discrepancy knockout-mediated
8
knockout-mediated knockdown-mediated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!