Human Milk Oligosaccharides (HMOs) are glycans with prebiotic properties known to drive microbial selection in the infant gut, which in turn influences immune development and future health. Bifidobacteria are specialized in HMO degradation and frequently dominate the gut microbiota of breastfed infants. However, some species of also degrade HMOs, which may prompt selection also of these species in the gut microbiota. To investigate to what extent specific HMOs affect the abundance of naturally occurring species in a complex mammalian gut environment, we conducted a study in 40 female NMRI mice administered three structurally different HMOs, namely 6'sialyllactose (6'SL, = 8), 3-fucosyllactose (3FL, = 16), and Lacto-N-Tetraose (LNT, = 8), through drinking water (5%). Compared to a control group receiving unsupplemented drinking water ( = 8), supplementation with each of the HMOs significantly increased both the absolute and relative abundance of species in faecal samples and affected the overall microbial composition analyzed by 16s rRNA amplicon sequencing. The compositional differences were mainly attributed to an increase in the relative abundance of the genus (formerly ) and a concomitant decrease of the genus (formerly XIVa cluster). During a 1-week washout period performed specifically for the 3FL group, this effect was reversed. Short-chain fatty acid analysis of faecal water revealed a decrease in acetate, butyrate and isobutyrate levels in animals supplemented with 3FL, which may reflect the observed decrease in the genus. This study highlights HMO-driven selection in the gut environment, which may cause a reduction of butyrate-producing clostridia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117735 | PMC |
http://dx.doi.org/10.1093/femsml/uqac006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!