Schizophrenia is a psychiatric syndrome that affects approximately 1 % of the world population and is among the top 10 reasons for disability. In this case-control study, we investigated the association between 15 insertion/deletion (Indel) polymorphisms and schizophrenia risk using pooled samples. In the present case-control study, 361 individuals with schizophrenia and 360 healthy individuals were included in the study. We examined the insertion/deletion polymorphisms in , , , , , , , , , , , , , and genes. Our results revealed that the Del allele of the 14bp Indel polymorphism increased the risk of schizophrenia (OR=1.23, 95 % CI=1.01-1.52, p=0.045) and the Alu allele of the Alu/Alu polymorphism negatively associated with the schizophrenia risk (OR=0.67, 95 % CI=0.54-0.82, p<0.001).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201014 | PMC |
http://dx.doi.org/10.17179/excli2022-5734 | DOI Listing |
Plant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA.
Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, University Rennes, 35000 Rennes, France.
The insertion/deletion (I/D) polymorphism in , the gene encoding the angiotensin-converting enzyme (ACE), has been suggested as a genetic variation that can influence exercise performance and risk of injury in elite athletes. The I allele has been associated with enhanced endurance performance and with reduced inflammation, while the D allele has been associated with improved performance in strength and power activities. However, the role of this genetic variant in the incidence of non-contact injury is underexplored.
View Article and Find Full Text PDFVet Sci
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
Organisms have the capacity to detect day-night fluctuations through oscillators regulated by circadian clock genes, which are crucial for regulating various biological processes. Numerous studies have demonstrated a marked association between these genes and various growth traits of sheep. This study identified polymorphisms at 23 potential loci within five clock genes in four Chinese sheep breeds.
View Article and Find Full Text PDFWorld J Oncol
February 2025
Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
Background: Peritumoral lidocaine infiltration prior to excision is associated with better survival in breast cancer (BC), which led us to hypothesize that innervation to the tumor affects its biology and patient survival. Activity-regulated cytoskeleton-associated protein (ARC) gene expression is known to be regulated by neuronal activity. Therefore, we studied the clinical relevance of ARC gene expression as a surrogate of neuronal activity in BC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!