As the largest energy consumer, China's control of carbon emissions from energy consumption plays a pivotal role in world climate governance. However, few studies have been conducted to explore the emission reduction pathways that promote a high level of synergy between China's economic growth and the " carbon peaking and carbon neutrality " goal from the perspective of energy consumption. Based on the measurement of energy consumption carbon emissions, this paper reveals the spatial and temporal distribution and evolution trends of carbon emissions in China at the national-provincial level. The multi-dimensional socio-economic factors such as R&D and urbanization are taken into account, and the LMDI model is used to decompose the driving effects of energy consumption carbon emissions at the national-provincial levels. Further, this paper combines the Tapio decoupling index with the LMDI model to decompose the decoupling states of China year by year and at the provincial level in four periods to explore the reasons for the change of carbon decoupling states. The results show that: (1) China's energy consumption carbon emissions grew at a high rate before 2013, and slowed down after that. There are significant differences in the scale and growth rate of carbon emissions among provinces, which can be classified into four types accordingly. (2) The R&D scale effect, urbanization effect, and population scale effect are the factors driving the growth of China's carbon emissions; while the energy structure effect, energy consumption industry structure effect, energy intensity effect, and R&D efficiency effect inhibit the growth of China's carbon emissions. (3) Weak decoupling is the most dominant decoupling state in China from 2003 to 2020, and the decoupling state varies significantly among provinces. According to the conclusions, this paper proposes targeted policy recommendations based on China's energy endowment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27745-0 | DOI Listing |
Waste Manag Res
January 2025
Bohai Rim Energy Research Institute, Northeast Petroleum University, Daqing, Heilongjiang, China.
In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.
Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Afrone Network, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Background: Climate change is a global challenge, caused by increasing greenhouse gas (GHG) emissions. Dental clinical practice contributes to these emissions through patient and staff travel, waste, energy and water consumption and procurement. Carbon footprinting quantifies GHG emissions.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Institute for Integrated Energy Systems at University of Victoria (IESVic), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.
The world is increasingly facing the direct effects of climate change triggering warnings of a crisis for the healthy existence of humankind. The dominant driver of the climate emergency is the historical and continued accumulation of atmospheric CO altering net radiative forcing on the planet. To address this global issue, understanding the core chemistry of CO manipulation in the atmosphere and proximally in the oceans is crucial, to offer a direct partial solution for emissions handling through negative emissions technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!