Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lysosomal enzymes degrade cellular macromolecules, while their inactivation causes human hereditary metabolic disorders. Mucopolysaccharidosis IVA (MPS IVA; Moquio A syndrome) is one of the lysosomal storage disorders caused by a defective Galactosamine-6-sulfatase (GalN6S) enzyme. In several populations, disease incidence is elevated due to missense mutations brought on by non-synonymous allelic variation in the GalN6S enzyme. Here, we studied the effect of non-synonymous single nucleotide polymorphism (nsSNPs) on the structural dynamics of the GalN6S enzyme and its binding with N-acetylgalactosamine (GalNAc) using all-atom molecular dynamics simulation and an essential dynamics approach. Consequently, in this study, we have identified three functionally disruptive mutations in domain-I and domain-II, that is, S80L, R90W, and S162F, which presumably contribute to post-translational modifications. The study delineated that both domains work cooperatively, and alteration in domain II (S80L, R90W) leads to conformational changes in the catalytic site in domain-I, while mutation S162F mainly provokes higher residual flexibility of domain II. These results show that these mutations impair the hydrophobic core, implying that Morquio A syndrome is caused by misfolding of the GalN6S enzyme. The results also show the instability of the GalN6S-GalNAc complex upon substitution. Overall, the structural dynamics resulting from point mutations give the molecular rationale for Moquio A syndrome and, more importantly, the Mucopolysaccharidoses (MPS) family of diseases, re-establishing MPS IVA as a protein-folding disease.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2214234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!