The rapid and sensitive detection of heavy metal ions is of great importance in food safety and for the environment. Therefore, two novel probes, M-CQDs and P-CQDs, based on carbon quantum dots were utilized to detect Hg based on fluorescence resonance energy transfer and photoinduced electron transfer mechanisms. The M-CQDs were prepared from folic acid and -phenylenediamine (mPDA) using a hydrothermal method. Similarly, the novel P-CQDs were obtained according to the same synthetic procedure used to create M-CQDs except the mPDA was replaced with -phenylenediamine (PDA). Upon the addition of Hg to the M-CQDs probe, the fluorescence intensity reduced significantly with a linear concentration range between 5 and 200 nM. The limit of detection (LOD) was calculated to be 2.15 nM. On the contrary, the fluorescence intensity of the P-CQDs was enhanced greatly after the addition of Hg. The Hg detection was realized with a wide linear range from 100 to 5000 nM and the LOD was calculated to be as low as 52.5 nM. The fluorescence "quenching" and "enhancing" effect exhibited by the M-CQDs and P-CQDs, respectively, is due to the different distribution of -NH in the mPDA and pPDA precursors. Notably, paper-based chips modified with M/P-CQDs were established for visual Hg sensing, demonstrating the possibility for real-time detection of Hg. Moreover, the practicality of this system was confirmed through the successful measurement of Hg in tap water and river water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt00663hDOI Listing

Publication Analysis

Top Keywords

carbon quantum
8
quantum dots
8
sensitive detection
8
m-cqds p-cqds
8
fluorescence intensity
8
lod calculated
8
fluorescence
5
detection
5
m-cqds
5
synthesis nitrogen-doped
4

Similar Publications

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.

Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Cholesterol mediates the potential adverse influence of graphene quantum dots on placental lipid membrane model.

Sci Rep

December 2024

College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!