Associations of circulating metabolites with cerebral white matter hyperintensities.

J Neurochem

Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.

Published: July 2023

White matter hyperintensities (WMH) are the most compelling risk factors of stroke, dementia, and early mortality. We aimed to investigate the associations between WMH and circulating metabolites. We studied up to 8190 individuals from the UK Biobank, who have both measurements of 249 plasma metabolites and WMH volume. Linear regression models were applied in pooled samples, and age-stratified and sex-stratified subsamples to estimate the associations between WMH and metabolomic measures. We conducted three analytic models. In the basic model, we identified 45 metabolomic measures associated with WMH after multiple testing correction (p < 0.0022), 15 of which remained significant in additional adjustments, but no metabolites passed the full adjustment in pooled samples. The 15 WMH-related metabolites were subfractions of various sizes of high-density lipoprotein (HDL), fatty acids, and glycoprotein acetyls. Among them, one fatty acid metabolite and 12 HDL-related traits showed significant negative associations with WMH. Higher glycoprotein acetyls were associated with large WMH. Strong age and sex specificities were observed indicating distinct metabolomic features accompany WMH in different samples. More metabolites were identified in males and adults under 50 years old. Circulating metabolites showed remarkably widespread associations with WMH. Population specificities may shed light on the different pertinent implications of WMH.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15845DOI Listing

Publication Analysis

Top Keywords

circulating metabolites
8
white matter
8
matter hyperintensities
8
associations wmh
8
metabolomic measures
8
wmh
5
associations circulating
4
metabolites cerebral
4
cerebral white
4
hyperintensities white
4

Similar Publications

Metabolomics and ionomics reveal the quality differences among peach, acacia and karaya gums.

Food Res Int

February 2025

College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China. Electronic address:

Despite the diverse industrial applications and health benefits of plant gums, significant variations in quality among different types remain underexplored. This study investigates the differences in antioxidant activity, mineral elements, and metabolic profiles among peach, acacia, and karaya gums. Our findings reveal significant differences in total phenol content, with peach gum exhibiting the highest (20.

View Article and Find Full Text PDF

Norcantharidin (NCTD), an antitumor agent with an increased leukocyte function, has been used for the treatment of hepatocellular carcinoma (HCC) in clinical. However, the clinical application of NCTD is limited due to its inadequate hydrophilicity and lipophilicity, short half-life (t), as well as adverse effects such as vascular irritation, cardiotoxicity, and nephrotoxicity. Herein, a lactoferrin (Lf) and DSPE-mPEG functionalized liposomes loaded with norcantharidic acid (NCA), an active metabolite of NCTD, was constructed for the targeted therapy of HCC.

View Article and Find Full Text PDF

Circadian metabolic adaptations to infections.

Philos Trans R Soc Lond B Biol Sci

January 2025

Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy.

Circadian clocks are biological oscillators that evolved to coordinate rhythms in behaviour and physiology around the 24-hour day. In mammalian tissues, circadian rhythms and metabolism are highly intertwined. The clock machinery controls rhythmic levels of circulating hormones and metabolites, as well as rate-limiting enzymes catalysing biosynthesis or degradation of macromolecules in metabolic tissues, such control being exerted both at the transcriptional and post-transcriptional level.

View Article and Find Full Text PDF

Tissue-Resident Memory T Cells in Tumor Immunity and Immunotherapy of Digestive System Tumors.

Immunol Invest

January 2025

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.

Tissue-resident memory T (TRM) cells possess unique abilities to migrate, establish themselves in tissues, and monitor peripheral tissues without circulating. They are crucial in providing long-lasting and local immune protection against surface infections. TRMs demonstrate distinct phenotypic and functional characteristics compared to central memory T (Tcm) cells and effector memory T (Tem) cells.

View Article and Find Full Text PDF

Gut Microbiota Metabolites Sensed by Host GPR41/43 Protect Against Hypertension.

Circ Res

January 2025

Hypertension Research Laboratory, School of Biological Sciences (R.R.M., T.Z., E.D., L.X., A.B.-W., H.A.J., M.N., M.P., K.C.L., W.Q., J.A.O.D., F.Z.M.).

Background: Fermentation of dietary fiber by the gut microbiota leads to the production of metabolites called short-chain fatty acids, which lower blood pressure and exert cardioprotective effects. Short-chain fatty acids activate host signaling responses via the functionally redundant receptors GPR41 and GPR43, which are highly expressed by immune cells. Whether and how these receptors protect against hypertension or mediate the cardioprotective effects of dietary fiber remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!