Mitral/tufted cells (M/TCs), the principal output neuron classes form complex circuits with bulbar neurons and long-range centrifugal circuits with higher processing areas such as the horizontal limb of the diagonal band of Broca (HDB). The precise excitability of output neurons is sculpted by local inhibitory circuits. Here, light-gated cation channel channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of evoked postsynaptic currents/potentials of HDB input to all classes of M/TCs and effects on firing in the acute slice preparation. Activation of the HDB directly inhibited all classes of output neurons exhibiting frequency-dependent short-term depression of evoked inhibitory postsynaptic current (eIPSC)/potential (eIPSP), resulting in decreased inhibition of responses to olfactory nerve input as a function of input frequency. In contrast, activation of an indirect circuit of HDB→interneurons→M/TCs induced frequency-dependent disinhibition, resulting in short-term facilitation of evoked excitatory postsynaptic current (eEPSC) eliciting a burst or cluster of spiking in M/TCs. The facilitatory effects of elevated HDB input frequency were strongest on deeper output neurons (deep tufted and mitral cells) and negligible on peripheral output neurons (external and superficial tufted cells). Taken together, GABAergic HDB activation generates frequency-dependent regulation that differentially affects the excitability and responses across the five classes of M/TCs. This regulation may help maintain the precise balance between inhibition and excitation of neuronal circuits across the populations of output neurons in the face of changes in an animal sniffing rate, putatively to enhance and sharpen the tuning specificity of individual or classes of M/TCs to odors. Neuronal circuits in the olfactory bulb closely modulate olfactory bulb output activity. Activation of GABAergic circuits from the HDB to the olfactory bulb has both direct and indirect action differentially across the five classes of M/TC bulbar output neurons. The net effect enhances the excitability of deeper output neurons as HDB frequency increases, altering the relative inhibition-excitation balance of output circuits. We hypothesize that this sharpens the tuning specificity of classes of M/TCs to odors during sensory processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281792PMC
http://dx.doi.org/10.1152/jn.00390.2022DOI Listing

Publication Analysis

Top Keywords

output neurons
28
olfactory bulb
16
classes m/tcs
16
output
10
neurons
9
classes
8
tufted cells
8
hdb
8
hdb input
8
postsynaptic current
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!