The ternary TbNdZnNi (x = 0.5, y = 4.83) disordered phase belongs to the structural family based on the rhombohedral ThZn structure type. The structure is maximally disordered since all the sites are occupied by statistical mixtures of atoms. The Tb/Nd mixture of atoms occupies the 6c site (site symmetry 3m). The statistical mixtures Ni/Zn consisting of more Ni atoms are located in the 6c and 9d (symmetry .2/m) sites. In the following 18f (site symmetry .2) and 18h (site symmetry .m) sites are located Zn/Ni statistical mixtures which consist of more Zn atoms. Zn/Ni atoms form three-dimensional networks with hexagonal channels that fill statistical mixtures of Tb/Nd and Ni/Zn. The TbNdZnNi compound belongs to the family of intermetallic phases capable of absorbing hydrogen. In the structure, there are three types of voids, namely, 9e (site symmetry .2/m), 3b (site symmetry -3m) and 36i (site symmetry 1), in which hydrogen can be inserted, and the maximum total absorption capacity can reach 1.21 wt% H. Electrochemical hydrogenation shows that the phase absorbs 1.03% of H, which indicates partial filling of the voids with H atoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2053229623004369 | DOI Listing |
RSC Adv
January 2025
Departamento de Física Aplicada, Facultade de Óptica e Optometríae Instituto de Materiais (iMATUS) Campus Vida, Universidade de Santiago de Compostela (USC) 15782 Galicia Spain.
The Cr and Sm doped GdAlO perovskite with formula GdSmAlCrO, was synthesized a solid-state reaction method, and its structure, morphology, and photoluminescence properties were thoroughly investigated. The compound crystallizes in the orthorhombic space group, with Cr transition-metal ions substituting Al in the octahedral symmetry site, and Sm lanthanide (rare-earth) ions occupying the tetrahedral site. The material's morphology and chemical composition homogeneity were evaluated through Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis.
View Article and Find Full Text PDFInorg Chem
January 2025
CNRS, University of Bordeaux, Bordeaux INP, ICMCB UMR CNRS 5026, F-33600 Pessac ,France.
The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.
View Article and Find Full Text PDFJ Craniomaxillofac Surg
January 2025
The Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:
The structural integrity of the lips is essential for both aesthetic appeal and oral functionality. Defects in this region, which may arise from a variety of causes, can significantly affect a patient's physical and psychological well-being. This case report introduces a novel surgical technique designed for the repair of substantial defects in the lower lip.
View Article and Find Full Text PDFSmall
January 2025
College of Semiconductors (College of Integrated Circuits), Hunan University Changsha, Hunan, 410082, P. R. China.
Tin-based halide perovskites (ASnX) have garnered substantial interest due to their unique photoelectric properties and environmentally friendly features. The A-site ions tuning strategy has been proven to promote material performance. However, there is a lack of systematic research on the optical properties, lattice structure variation, and band structure evolution in tin-based perovskites when the A-site ions tune from organic to inorganic.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
The 90-year-old Hume-Rothery rule was adapted to design an outstanding bifunctional tetra-metallic alloy electrocatalyst for water electrolysis. Following the radius mismatch principles, Fe (131 pm) and Ni (124 pm) are selectively incorporated at the Pd (139 pm) site of MoPd nanosheets. Analogously, Cu (132 pm) alloys with only Pd, while Ag (145 pm) alloys with both Pd and Mo (154 pm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!