Water stress can cause declines in plant function that persist after rehydration. Recent work has defined 'resilience' traits characterizing leaf resistance to persistent damage from drought, but whether these traits predict resilience in whole-plant function is unknown. It is also unknown whether the coordination between resilience and 'resistance' - the ability to maintain function during drought - observed globally occurs within ecosystems. For eight rainforest species, we dehydrated and subsequently rehydrated leaves, and measured water stress thresholds for declines in rehydration capacity and maximum quantum yield of photosystem II (F /F ). We tested correlations with embolism resistance and dry season water potentials (Ψ ), and calculated safety margins for damage (Ψ - thresholds) and tested correlations with drought resilience in sap flow and growth. Ψ thresholds for persistent declines in F /F , indicating resilience, were positively correlated with Ψ and thresholds for leaf vein embolism. Safety margins for persistent declines in F /F , but not rehydration capacity, were positively correlated with drought resilience in sap flow. Correlations between resistance and resilience suggest that species' differences in performance during drought are perpetuated after drought, potentially accelerating shifts in forest composition. Resilience to photochemical damage emerged as a promising functional trait to characterize whole-plant drought resilience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18973 | DOI Listing |
Plants (Basel)
January 2025
Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche (UNIVPM), Via Brecce Bianche 10, 60131 Ancona, Italy.
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av. 10, 630090 Novosibirsk, Russia.
Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.
Drought and flood (water stress) alter plant metabolism, impacting the phytochemical content and biological effects. Using spectrophotometric, HPLC, and electrophoretic methods, we analyze the effects of water stress on broccoli ( L. convar.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!