Studying rapid biological changes accompanying the introduction of alien organisms into native ecosystems can provide insights into fundamental ecological and evolutionary theory. While powerful, this quasi-experimental approach is difficult to implement because the timing of invasions and their consequences are hard to predict, meaning that baseline pre-invasion data are often missing. Exceptionally, the eventual arrival of (hereafter Varroa) in Australia has been predicted for decades. Varroa is a major driver of honeybee declines worldwide, particularly as vectors of diverse RNA viruses. The detection of Varroa in 2022 at over a hundred sites poses a risk of further spread across the continent. At the same time, careful study of Varroa's spread, if it does become established, can provide a wealth of information that can fill knowledge gaps about its effects worldwide. This includes how Varroa affects honeybee populations and pollination. Even more generally, Varroa invasion can serve as a model for evolution, virology and ecological interactions between the parasite, the host and other organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207324PMC
http://dx.doi.org/10.1098/rsbl.2022.0589DOI Listing

Publication Analysis

Top Keywords

ecological evolutionary
8
varroa
5
final frontier
4
frontier ecological
4
evolutionary dynamics
4
dynamics global
4
global parasite
4
parasite invasion
4
invasion studying
4
studying rapid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!