In many terrestrial seeds, photosynthetic activity supplies O to the developing plant embryo to sustain aerobic metabolism and enhance biosynthetic activity. However, whether seagrass seeds possess similar photosynthetic capacity to alleviate intra-seed hypoxic stress conditions is unknown. We used a novel combination of microscale variable chlorophyll fluorescence imaging, a custom-made O optode microrespirometry system and planar optode O imaging, to determine the O microenvironment and photosynthetic activity in developing seeds and seedlings of seagrass (Zostera marina). Developing, sheath-covered seeds exhibited high O concentrations in the photosynthetic active seed sheath and low O concentrations in the centre of the seed at the position of the embryo. In light, photosynthesis in the seed sheath increased O availability in central parts of the seed enabling enhanced respiratory energy generation for biosynthetic activity. Early-stage seedlings also displayed photosynthetic capacity in hypocotyl and cotyledonary tissues, which may be beneficial for seedling establishment. Sheath O production is important for alleviating intra-seed hypoxic stress, which might increase endosperm storage activity, improving the conditions for successful seed maturation and germination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18986 | DOI Listing |
Front Plant Sci
January 2025
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.
Chlorophyll density (ChD) can reflect the photosynthetic capacity of the winter wheat population, therefore achieving real-time non-destructive monitoring of ChD in winter wheat is of great significance for evaluating the growth status of winter wheat. Derivative preprocessing has a wide range of applications in the hyperspectral monitoring of winter wheat chlorophyll. In order to research the role of fractional-order derivative (FOD) in the hyperspectral monitoring model of ChD, this study based on an irrigation experiment of winter wheat to obtain ChD and canopy hyperspectral reflectance.
View Article and Find Full Text PDFBackground: The photothermal sensitivity of tobacco refers to how tobacco plants respond to variations in the photothermal conditions of their growth environment. The degree of this sensitivity is crucial for determining the optimal planting regions for specific varieties, as well as for improving the quality and yield of tobacco leaves. However, the precise mechanisms underlying the development of photothermal sensitivity in tobacco remain unclear.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Agricultural College, Anhui Agricultural University, 230036, Hefei, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), 210095, Nanjing, China. Electronic address:
Nitric oxide (NO) positively contributes to maintaining a high photosynthetic rate in waterlogged-wheat plants by maintaining high stomatal conductance (g), mesophyll conductance (g), and electron transport rates in PSII (J). However, the molecular mechanisms underlying the synergistic regulation of photosynthetic characteristics during wheat waterlogging remain unclear. Pot experiments were conducted with two cultivars: Yangmai15 (YM15: high waterlogging-tolerance capacity) and Yangmai24 (YM24: conventional waterlogging-tolerance capacity).
View Article and Find Full Text PDFSpectral analysis is a widely used method for monitoring photosynthetic capacity. However, vegetation indices-based linear regression exhibits insufficient utilization of spectral information, while full spectra-based traditional machine learning has limited representational capacity (partial least squares regression) or uninterpretable (convolution). In this study, we proposed a deep learning model with enhanced interpretability based on attention and vegetation indices calculation for global spectral feature mining to accurately estimate photosynthetic capacity.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Universidad de Talca, Talca, Chile.
Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!