Holographic display is considered as a promising three-dimensional (3D) display technology and has been widely studied. However, to date, the real-time holographic display for real scenes is still far from being incorporated in our life. The speed and quality of information extraction and holographic computing need to be further improved. In this paper, we propose an end-to-end real-time holographic display based on real-time capture of real scenes, where the parallax images are collected from the scene and a convolutional neural network (CNN) builds the mapping from the parallax images to the hologram. Parallax images are acquired in real time by a binocular camera, and contain depth information and amplitude information needed for 3D hologram calculation. The CNN, which can transform parallax images into 3D holograms, is trained by datasets consisting of parallax images and high-quality 3D holograms. The static colorful reconstruction and speckle-free real-time holographic display based on real-time capture of real scenes have been verified by the optical experiments. With simple system composition and affordable hardware requirements, the proposed technique will break the dilemma of the existing real-scene holographic display, and open up a new direction for the application of real-scene holographic 3D display such as holographic live video and solving vergence-accommodation conflict (VAC) problems for head-mounted display devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.479652 | DOI Listing |
This Letter discusses the limitations of immersion-free recording schemes for holographic waveguide displays. Traditional holographic recording of waveguides requires recording angles exceeding the critical angle of the hologram-cladding interface. Achieving these angles necessitates edge-lit exposure using prisms and immersion liquids, which are challenging for roll-to-roll mass production and hinder widespread adoption.
View Article and Find Full Text PDFWe present the first, to our knowledge, metasurface holographic display method with exceptional fidelity and minimal edge noise, based on highly uniform flat-top light generated by a digital micromirror device (DMD). Based on the error-diffusion algorithm and iterative refinement process, the amplitude distribution of the initial Gaussian light was dynamically closed-loop modulated, and the standard difference of the intensity of the 3 mm diameter center flat-top beam was reduced to less than 3.4%.
View Article and Find Full Text PDFComputer-generated holography (CGH) is an advanced technology for three-dimensional (3D) displays. While the stochastic gradient descent (SGD) method is effective for holographic optimization, its application to holographic video displays is computationally expensive, as each frame requires separate optimization. To address this, we propose a novel, to the best of our knowledge, clustering optimization strategy to accelerate the SGD process for holographic video displays.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Metasurfaces have exhibited excellent capabilities in controlling main characteristics of electromagnetic fields. Thus, a lot of significant achievements have been attained in many areas especially in the fields of hologram and near-field imaging. However, some of these designs are implemented in a manner of interleaved subarrays that complicates the design and makes them difficult to achieve integration.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Centre for Mobile Innovation (CMI), Sheridan College, Oakville, Ontario, Canada.
In this paper, we introduce -a Mixed Reality (MR) system designed for healthcare professionals to monitor patients in wards or clinics. We detail the design, development, and evaluation of , which integrates real-time vital signs from a biosensor-equipped wearable, . The system generates holographic visualizations, allowing healthcare professionals to interact with medical charts and information panels holographically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!