Background: The combination of cellulase and lytic polysaccharide monooxygenase (LPMO) is known to boost enzymatic saccharification of cellulose. Although the synergy between cellulases (GH5, 6 or 7) and LPMOs (AA9) has been extensively studied, the interplay between other glycoside hydrolase and LPMO families remains poorly understood.
Results: In this study, two cellulolytic enzyme-encoding genes SmBglu12A and SmLpmo10A from Streptomyces megaspores were identified and heterologously expressed in Escherichia coli. The recombinant SmBglu12A is a non-typical endo-β-1,4-glucanase that preferentially hydrolyzed β-1,3-1,4-glucans and slightly hydrolyzed β-1,4-glucans and belongs to GH12 family. The recombinant SmLpmo10A belongs to a C1-oxidizing cellulose-active LPMO that catalyzed the oxidation of phosphoric acid swollen cellulose to produce celloaldonic acids. Moreover, individual SmBglu12A and SmLpmo10A were both active on barley β-1,3-1,4-glucan, lichenan, sodium carboxymethyl cellulose, phosphoric acid swollen cellulose, as well as Avicel. Furthermore, the combination of SmBglu12A and SmLpmo10A enhanced enzymatic saccharification of phosphoric acid swollen cellulose by improving the native and oxidized cello-oligosaccharides yields.
Conclusions: These results proved for the first time that the AA10 LPMO was able to boost the catalytic efficiency of GH12 glycoside hydrolases on cellulosic substrates, providing another novel combination of glycoside hydrolase and LPMO for cellulose enzymatic saccharification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207622 | PMC |
http://dx.doi.org/10.1186/s13068-023-02332-0 | DOI Listing |
Foods
December 2024
Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China.
The key role of enzymatic hydrolysis and fermentation in the sensory quality of set yogurt made from whole oats was demonstrated. The optimal process was established by the orthogonal and response surface methodology based on the acidity, textural, and rheological properties. The results indicated that the enzymatic hydrolysis appropriately consisted of liquefaction with 12 U/mL α-amylase at 70 °C and pH 6.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity.
View Article and Find Full Text PDFBBA Adv
December 2024
Novonesis, 2 Biologiens Vej, DK-2800 Lyngby Denmark.
Cellulases are of paramount interest for upcoming biorefineries that utilize residue from agriculture and forestry to produce sustainable fuels and chemicals. Specifically, cellulases are used for the conversion of recalcitrant plant biomass to fermentable sugars in a so-called saccharification process. The vast literature on enzymatic saccharification frequently refers to low catalytic rates of cellulases as a main bottleneck for industrial implementation, but such statements are rarely supported by kinetic or thermodynamic considerations.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK. Electronic address:
Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100080, China. Electronic address:
Lignocellulose is one of the world's most abundant and underutilized biomass resources, and its proper treatment and utilization are critical to environmental issues and sustainable development. However, lignocellulose's inherently compact and intricate structure reduces enzymatic hydrolysis's efficiency, which is still an obstacle to overcome. A new pretreatment method with relatively low-temperature and low-pressure holding (LTLPH) after the traditional extrusion, pulp refining instrument (PFI), and instant catapult steam explosion (ICSE) was proposed to obtain a better output of corn stover saccharification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!