Wheat stripe rust, caused by f. sp. , is one of the most serious plant diseases worldwide. Resistant cultivars are the most effective way to control the disease. is an important stripe rust resistance gene that has been used in wheat breeding programs and is represented in the host differential set to identify f. sp. races in the United States. To map , AvSYrTr1NIL was backcrossed to its recurrent parent Avocet S (AvS). Seedlings of BCF, BCF, and BCF populations were tested with -avirulent races under controlled conditions, and BCF plants were genotyped using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. was mapped to the short arm of chromosome 1B using four SSR and seven SNP markers. The genetic distances of from the nearest flanking markers and were 1.8 and 1.3 centimorgans (cM), respectively. DNA amplification of a set of 21 Chinese Spring (CS) nulli-tetrasomic lines and seven CS 1B deletion lines with three SSR markers confirmed the chromosome arm location and further placed the gene in chromosomal bin region 1BS18 (0.5). The gene was determined to be about 7.4 cM proximal to . Based on multirace response array and chromosomal location, was determined to be different from other permanently named stripe rust resistance genes in chromosome arm 1BS and was named .

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-22-2600-REDOI Listing

Publication Analysis

Top Keywords

stripe rust
16
rust resistance
8
bcf bcf
8
snp markers
8
chromosome arm
8
molecular mapping
4
mapping comparison
4
comparison genes
4
genes resistance
4
stripe
4

Similar Publications

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

Evaluation of resistance and molecular detection of resistance genes to wheat stripe rust of 82 wheat cultivars in Xinjiang, China.

Sci Rep

December 2024

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.

Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.

View Article and Find Full Text PDF

Pseudo-linkage or real-linkage of rust resistance genes in a wheat-Thinopyrum intermedium translocation line.

Theor Appl Genet

December 2024

Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW, 2570, Australia.

We analysed the chromosomal structures of two wheat-Thinopyrum intermedium addition lines Z4 and Z5 and resolved the linkage relationship between the leaf rust and stripe rust resistance genes in Z4. Wheat addition lines Z4 and Z5 carrying rust resistance genes from Thinopyrum intermedium (JJJJStSt, 2n = 6x = 42) together with three wheat lines involved in the production of these addition lines were analysed by rust response, 90K SNP genotyping, and molecular cytogenetic analysis. Seedling leaf rust (LR) responses to five diverse pathotypes indicated that the LR resistance gene(s) was located in translocation chromosome T3DS-3AS.

View Article and Find Full Text PDF

f. sp. Exhibited a Significant Change in Virulence and Race Frequency in Xinjiang, China.

J Fungi (Basel)

December 2024

Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China.

Xinjiang is an important region due to its unique epidemic characteristics of wheat stripe rust disease caused by f. sp. .

View Article and Find Full Text PDF

Secreted Xylanase PstXyn1 Contributes to Stripe Rust Infection Possibly by Overcoming Cell Wall Barrier and Suppressing Defense Responses in Wheat.

J Agric Food Chem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.

f. sp. () secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!