Bacterial panicle blight (BPB) has become one of the most destructive diseases of rice worldwide and and are two major pathogens causing BPB (1). This disease causes several types of damage, most importantly grain spotting, rot, and panicle blight, which can result in yield losses of 75% or more (1,3). In recent years, symptoms including sheath rot, grain spotting, grain rot, and panicle blight have been observed in both inbred and hybrid rice varieties. These symptoms resemble those of BPB and cause cultivar-dependent yield losses. (3) also reported the same symptoms for BPB. To confirm the cause of the disease, 21 rice panicles (Haridhan, a local variety) with typical BPB symptoms were collected from a farmer's field in the region of Mymensingh, Bangladesh during the rainy season in mid-October, 2021. Due to the severity of the outbreak, the panicles became dark brown and produced chaffy grains; nearly 100% of the rice panicles in that field were severely infected. To identify the causal pathogen(s), 1g of rice grains from 20 plants with typical BPB symptoms were surface-sterilized by immersing them in 70% ethanol for a few seconds followed by sodium hypochlorite solution (3%) for 1min. The grains were then rinsed with sterilized distilled water three times. Surface-sterilized grains were then ground with a mortar and pestle; 5mL of sterile distilled water was added during grinding. The extracted suspension (20µL) was then either streaked or spread onto the selective medium (S-PG) (2). Bacterial colonies showing purple color on the S-PG medium were selected and purified as candidate pathogens. For molecular characterization, species specific primers targeting gene were used to perform PCR and resulted in 479bp as reported by (4). To verify further, the PCR products of 16SF & 16SR were amplified and sequenced partially producing around 1400bp (1) and five 16SF partial sequences were deposited into NCBI GenBank (OP108276 to OP108280). 16S rDNA and revealed almost 99% homology with (KU851248.1, MZ425424.1) and (AB220893, CP033430) respectively using BLAST analysis. These purified bacterial isolates produced a diffusible light-yellow pigment on King's B medium indicating toxoflavin production (3). The candidate five bacterial isolates were then confirmed by inoculating 10ml suspension 10CFU/mL into the panicles and sheaths of BRRIdhan28 in net house condition as described previously (1). All of the bacterial isolates obtained from the spotted rice grains produced light brown lesions on the inoculated leaf sheath as well as spotting on the grain. To fulfill Koch's postulates, the bacteria were re-isolated from the symptomatic panicles and were confirmed as by analyzing the sequences of and 16s rDNA genes. Taken together, these results confirmed that is responsible for causing BPB in the rice grain samples that we collected. To our knowledge, this is the first report of BPB caused by in Bangladesh and further research is necessary to develop an effective disease management technique, or else the production of rice will be severely hampered.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-02-23-0229-PDNDOI Listing

Publication Analysis

Top Keywords

panicle blight
16
bacterial isolates
12
bpb
9
rice
9
bacterial panicle
8
blight bpb
8
bpb rice
8
caused bangladesh
8
causing bpb
8
grain spotting
8

Similar Publications

Improvement of Quality and Disease Resistance for a Heavy-Panicle Hybrid Restorer Line, R600, in Rice ( L.) by Gene Pyramiding Breeding.

Curr Issues Mol Biol

September 2024

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.

The utilization of heavy-panicle hybrid rice exemplifies the successful integration of architectural enhancement and heterosis, which has been widely adopted in the southwest rice-producing area of China. Iterative improvement in disease resistance and grain quality of heavy-panicle hybrid rice varieties is crucial to promote their sustainable utilization. Here, we performed a molecular design breeding strategy to introgress beneficial alleles of broad-spectrum disease resistance and grain quality into a heavy-panicle hybrid backbone restorer line Shuhui 600 (R600).

View Article and Find Full Text PDF

The plant pathogenic bacterium Burkholderia glumae causes bacterial panicle blight (BPB) in rice-growing areas worldwide. It has been widely accepted that an acyl-homoserine lactone (AHL)-type quorum sensing (QS) system encoded by tofI and tofR genes (TofIR QS) is a key regulatory mechanism underlying the bacterial pathogenesis of B. glumae.

View Article and Find Full Text PDF

First report of nut rot caused by on almond in Italy.

Plant Dis

September 2024

University of Torino, DISAFA - Dept. Agricultural, Forestry and Food Sciences, Largo Braccini 2, Grugliasco, TO, Italy, 10095.

Almond (Prunus dulcis) is an important nut crop widely grown in the Mediterranean region, including Italy. In September 2021, almonds cv. Tuono showing dark lesions affecting the hull were collected in Villar San Costanzo (Piedmont, Northwestern Italy).

View Article and Find Full Text PDF

Metconazole inhibits fungal growth and toxin production in major Fusarium species that cause rice panicle blight.

Pestic Biochem Physiol

September 2024

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Collage of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Rice panicle blight (RPB) caused by various Fusarium spp. is an emerging disease in the major rice-growing regions of China. Epidemics of this disease cause significant yield loss and reduce grain quality by contaminating panicles with different Fusarium toxins.

View Article and Find Full Text PDF

A diverse Fusarium community is responsible for contamination of rice with a variety of Fusarium toxins.

Food Res Int

November 2024

Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:

Rice plays an important role in the daily diet in China and therefore its quality and safety have been of great concern. However, few systematic studies have investigated Fusarium community and toxins in rice grains. Here, we collected 1381 rice samples from Jiangsu Province in eastern China and found a higher frequency of zearalenone (ZEN), deoxynivalenol (DON), fumonisins (FBs), and beauvericin (BEA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!