Hybrid nanofluid are the modified class of nanofluids with extra high thermal performances and present different applications in automotive cooling, heat transfer devices, solar collectors, engine applications, fusion processes, machine cutting, chemical processes etc. This thermal research explores the heat transfer assessment due to hybrid nanofluid with of different shape features. The thermal inspections regarding the hybrid nanofluid model are justified with aluminium oxide and titanium nanoparticles. The base liquid properties are disclosed with ethylene glycol material. The novel impact of current model is the presentation of different shape features namely Platelets, blade and cylinder. Different thermal properties of utilized nanoparticles at various flow constraints are reported. The problem of hybrid nanofluid model is modified in view of slip mechanism, magnetic force and viscous dissipation. The heat transfer observations for decomposition of TiO-AlO/CHO is assessed by using the convective boundary conditions. The shooting methodology is involved for finding the numerical observations of problem. Graphical impact of thermal parameters is observed for TiO-AlO/CHO hybrid decomposition. The pronounced observations reveal that thermal rate enhanced for blade shaped titanium oxide-ethylene glycol decomposition. The wall shear force reduces for blade shaped titanium oxide nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205811PMC
http://dx.doi.org/10.1038/s41598-023-34640-8DOI Listing

Publication Analysis

Top Keywords

hybrid nanofluid
20
shape features
12
heat transfer
12
viscous dissipation
8
nanofluid model
8
blade shaped
8
shaped titanium
8
thermal
7
hybrid
6
nanofluid
5

Similar Publications

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF

Although oil extraction is indispensable for meeting worldwide energy demands and ensuring industrial sustainability, various hazards are observed. Therefore, this study examined the chemical oil recovery-related environmental consequences concerning water, soil, ecosystem, and human health damages. A numerical analysis explored the mathematical model for oil extraction from unconventional sources by utilising 3D porous prism geometries under high-temperature conditions.

View Article and Find Full Text PDF

The numerical analysis examines the attributes of magnetohydrodynamic natural convection in a closed cavity including a circular hollow. Because mono and hybrid nanofluids have many applications in thermal engineering and manufacturing, hybrid nanofluids are utilized as the substance within the entire domain. The investigation centers on a closed, trapezoidal-shaped hollow with a heated surface ring.

View Article and Find Full Text PDF

This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.

View Article and Find Full Text PDF

Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!