Inside-out assembly of viral antigens for the enhanced vaccination.

Signal Transduct Target Ther

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.

Published: May 2023

Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens. In this manner, the receptor-binding domain (RBD, surface antigen) of the spike protein was trapped inside the nanocavity, while NP was absorbed on the outside of the droplets, enabling the burst release of NP before RBD. Compared with the natural packaging strategy, the inside-out strategy induced potent type I interferon-mediated innate immune responses and triggered an immune-potentiated environment in advance, which subsequently boosted CD40 DC activations and the engagement of the lymph nodes. In both H1N1 influenza and SARS-CoV-2 vaccines, rMASE significantly increased antigen-specific antibody secretion, memory T cell engagement, and Th1-biased immune response, which diminished viral loads after lethal challenge. By simply reversing the delivery sequence of the surface antigen and core antigen, the inside-out strategy may offer major implications for enhanced vaccinations against the enveloped RNA virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205815PMC
http://dx.doi.org/10.1038/s41392-023-01414-7DOI Listing

Publication Analysis

Top Keywords

surface antigen
12
natural dissemination
8
enveloped rna
8
core antigen
8
delivery sequence
8
inside-out strategy
8
antigen
5
inside-out assembly
4
assembly viral
4
viral antigens
4

Similar Publications

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.

View Article and Find Full Text PDF

The significance of antibody to hepatitis B surface antigen in infection and clearance of hepatitis B virus.

Hum Vaccin Immunother

December 2025

Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

One of the key features of chronic hepatitis B virus (HBV) infection is the inability to mount sufficient and coordinated adaptive immune responses against HBV. Recent studies on HBV-specific B cells and antibody to hepatitis B surface antigen (anti-HBs) have shed light on their role in the pathogenesis of chronic hepatitis B (CHB). Anti-HBs is recognized as a protective immune marker, both for HBV infection clearance and following vaccination, and it is also considered an important indicator of functional cure for CHB.

View Article and Find Full Text PDF

Prognostic value of carcinoembryonic antigen in colorectal adenocarcinoma: expanding hypotheses into clinical practice.

Clin Exp Med

January 2025

Liver & Peritonectomy Unit, Department of Surgery, St George Hospital, Pitney Building, Short Street, Kogarah, NSW, 2217, Australia.

Purpose: This study seeks to resolve a fundamental question in oncology: Why do appendiceal and colorectal adenocarcinomas exhibit distinct liver metastasis rates? Building on our prior hypothesis published in the British Journal of Surgery, our institution has investigated potential DNA mutations within the carcinoembryonic antigen-related cell adhesion molecule (CEACAM5) gene's Pro-Glu-Leu-Pro-Lys (PELPK) motif to evaluate its role as a biomarker for liver metastasis risk.

Methods: Partnering with the Australian Genome Research Facility, the PELPK motif of CEACAM5 was analysed in colorectal and appendiceal adenocarcinomas to detect DNA mutations associated with liver metastasis. Additionally, our institution performed the COPPER trial to assess carcinoembryonic antigen (CEA) levels in portal versus peripheral blood in patients with appendiceal adenocarcinoma and a systematic review and meta-analysis of 136 studies on CEA's prognostic significance among patients with colorectal and appendiceal adenocarcinoma.

View Article and Find Full Text PDF

PET has become an important clinical modality but is limited to imaging positron emitters. Recently, PET imaging withZr, which has a half-life of 3 days, has attracted much attention in immuno-PET to visualize immune cells and cancer cells by targeting specific antibodies on the cell surface. However,Zr emits a single gamma ray at 909 keV four times more frequently than positrons, causing image quality degradation in conventional PET.

View Article and Find Full Text PDF

MIF/CD74 axis in hepatic stellate cells mediates HBV-related liver fibrosis.

Int Immunopharmacol

January 2025

Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China. Electronic address:

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite advances in understanding HBV-related liver diseases, effective therapeutic strategies remain limited. Macrophage migration inhibitory factor (MIF) has been implicated in various inflammatory and fibrotic conditions, but its role in HBV-induced liver fibrosis has not been fully explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!