The robust meta-analytical-predictive (rMAP) prior is a popular method to robustly leverage external data. However, a mixture coefficient would need to be pre-specified based on the anticipated level of prior-data conflict. This can be very challenging at the study design stage. We propose a novel empirical Bayes robust MAP (EB-rMAP) prior to address this practical need and adaptively leverage external/historical data. Built on Box's prior predictive p-value, the EB-rMAP prior framework balances between model parsimony and flexibility through a tuning parameter. The proposed framework can be applied to binomial, normal, and time-to-event endpoints. Implementation of the EB-rMAP prior is also computationally efficient. Simulation results demonstrate that the EB-rMAP prior is robust in the presence of prior-data conflict while preserving statistical power. The proposed EB-rMAP prior is then applied to a clinical dataset that comprises 10 oncology clinical trials, including the prospective study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pst.2315 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!