Freshwater cyanobacteria are known worldwide for their potential to produce toxins. However, these organisms are also found in marine, terrestrial and extreme environments and produce unique compounds, other than toxins. Nevertheless, their effects on biological systems are still barely known. This work tested extracts of different cyanobacterial strains against zebrafish (Danio rerio) larvae and analyzed their metabolomic profiles using liquid chromatography combined with mass spectrometry. Strains Desertifilum tharense, Anagnostidinema amphibium, and Nostoc sp. promoted morphological abnormalities such as pericardial edema, edema in the digestive system region, curvature of the tail and spine in zebrafish larvae in vivo. In contrast, Microcystis aeruginosa and Chlorogloeopsis sp. did not promote such changes. Metabolomics revealed unique compounds belonging to the classes of terpenoids, peptides, and linear lipopeptides/microginins in the nontoxic strains. The toxic strains were shown to contain unique compounds belonging to the classes of cyclic peptides, amino acids and other peptides, anabaenopeptins, lipopeptides, terpenoids, and alkaloids and derivatives. Other unknown compounds were also detected, highlighting the rich structural diversity of secondary metabolites produced by cyanobacteria. The effects of cyanobacterial metabolites on living organisms, mainly those related to potential human and ecotoxicological risks, are still poorly known. This work highlights the diverse, complex, and unique metabolomic profiles of cyanobacteria and the biotechnological potential and associated risks of exposure to their metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2023.102430 | DOI Listing |
J Comput Chem
January 2025
Department of Organic Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
Lipophilicity and acidity/basicity are fundamental physical properties that profoundly affect the compound's pharmacological activity, bioavailability, metabolism, and toxicity. Predicting lipophilicity, measured by (1-octanol-water distribution coefficient logarithm), and acidity/basicity, measured by (negative of acid ionization constant logarithm), is essential for early drug discovery success. However, the limited availability of experimental data and poor accuracy of standard and assessment methods for saturated fluorine-containing derivatives pose a significant challenge to achieving satisfactory results for this compound class.
View Article and Find Full Text PDFIntroduction: Structural variants (SVs) of the nebulin gene ( ), including intragenic duplications, deletions, and copy number variation of the triplicate region, are an established cause of recessively inherited nemaline myopathies and related neuromuscular disorders. Large deletions have been shown to cause dominantly inherited distal myopathies. Here we provide an overview of 35 families with muscle disorders caused by such SVs in .
View Article and Find Full Text PDFChem Sci
December 2024
School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (, activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships.
View Article and Find Full Text PDFFood Chem X
January 2025
Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China.
Sweetpotato with different flesh colors exhibits significant differences in flavor. Nevertheless, research on the identification of the key aromatic compounds in sweetpotato is scarce. Therefore, 40 primary sweetpotato varieties with different flesh colors were analyzed by HS-SPME/GC-MS to characterize the volatile compounds.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors ( and , where has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)] (bpy = 2,2'-bipyridine), and MV (MV = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12-13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!