Site-selective growth and plasmonic spectral properties of L-shaped Janus Au-Ag gold nanodumbbells for surface-enhanced Raman scattering.

Spectrochim Acta A Mol Biomol Spectrosc

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China. Electronic address:

Published: October 2023

Ligand-mediated interface control has been broadly applied as a powerful tool in constructing asymmetric multicomponent nanoparticles (AMNP), and induces the anisotropic growth with fine-tuning morphology, composition, plasmonic property and functionality. As a new kind of AMNP, the synthesis of Janus Au-Ag nanoparticles with tunable negative surface curvature is still a challenge. Here, we demonstrate that the synergistic surface energy effects between gold nanodumbbells (Au NDs) with a negative surface curvature and 4-mercaptobenzoic acid (4-MBA) can direct the site-selective growth of anisotropic silver domains on gold nanodumbbells (Au NDs@Ag NPs). By adjusting the 4-MBA concentration-dependent interfacial energy, the Au NDs@Ag NPs could be continuously tuned from dumbbell-like core-shell structures, to L-shaped Janus, and then rod-like core-shell structures with directional and asymmetric spatial distributions of resizable Ag domains by site-selective growth. Based on the calculation results of discrete dipole approximation (DDA) method, it has been found that the Au NDs@Ag L-shaped Janus NPs with Ag island domains created polarization orientation-dependent plasmonic extinction spectra and hot spots around the negatively curved waist and Ag domains. The L-shaped Janus Au NDs@Ag NPs exhibited significantly plasmonic spectrum properties with four apparent LSPR peaks that cover from visible to near-infrared range and higher surface-enhanced Raman scattering (SERS) activity compared with the original Au NDs. The best SERS enhancement factor of 1.41 × 10 was achieved. This synergistic surface energy effect-based method involving the asymmetric growth of silver coating on gold nanoparticles with negatively curved surface presents a new method to design and fabricate nanometer optical devices based on asymmetric multicomponent nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.122862DOI Listing

Publication Analysis

Top Keywords

l-shaped janus
16
site-selective growth
12
gold nanodumbbells
12
nds@ag nps
12
janus au-ag
8
surface-enhanced raman
8
raman scattering
8
asymmetric multicomponent
8
multicomponent nanoparticles
8
negative surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!