Some visual properties are consistent across a wide range of environments, while other properties are more labile. The efficient coding hypothesis states that many of these regularities in the environment can be discarded from neural representations, thus allocating more of the brain's dynamic range to properties that are likely to vary. This paradigm is less clear about how the visual system prioritizes different pieces of information that vary across visual environments. One solution is to prioritize information that can be used to predict future events, particularly those that guide behavior. The relationship between the efficient coding and future prediction paradigms is an area of active investigation. In this review, we argue that these paradigms are complementary and often act on distinct components of the visual input. We also discuss how normative approaches to efficient coding and future prediction can be integrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-vision-112122-020941 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!